Neonatal Brain MR Protocols

Beth M. Kline-Fath, MD
Professor of Radiology
Chief of Fetal and Neonatal Imaging
Department of Neuroradiology
Cincinnati Children’s Hospital Medical Center
Sonography has been an important part of care in the neonate, particularly the high risk and unstable premature.
Neonatal Ultrasound

- Late 1970’s
 - Anterior fontanelle window to brain
 - Excellent premature infants
- 1980’s
 - Noninvasive
 - No sedation
 - Radiation free
 - Fast
 - Bedside
 - Low cost
 - Doppler flow
Indications for Head Ultrasound

- Hemorrhage
- Ventriculomegaly
- Ischemia
- CNS malformations
- Infection
- Masses
- Vascular abnormalities
Ultrasound Limitations

- Small field of view

- Contrast
 - Anoxic brain injury

- Functional information
Neonatal Imaging: CT

- Transportation
- Radiation
- Limitation in contrast
Obtain sonogram as initial study. If lack of concordance with clinical, MR should be considered

A.J. Barkovich
Pediatric Neuroimaging
Neonatal MRI

- Late 1980s and early 1990s
 - Superior soft tissue contrast
 - Multiple planes
 - Variable field of view
 - Higher imaging techniques
 - Diffusion
 - Spectroscopy
 - Functional
 - Volumetry
 - Arterial spin labeling (ASL)
MRI Difficulties

- Stability of neonate
 - Personnel
 - Monitoring
 - Thermoregulation
- Time
 - Preparation
- Transportation

- Sedation
 - Time
 - Risk
- MRI safety
 - Contraindications
 - Acoustic noise
- Imaging
 - Sequences
 - Coils
Stability of the Neonate: Monitoring

- MR compatible
 - Pulse oximeter
 - EKG leads
 - Ventilator
 - Infusion pumps or extension tubing
 - Life support
 - Resuscitation bag
 - Crash cart
- Blankets/sheets for warmth
Time for Preparation

- Undressed to diaper
- Transfer to MR compatible equipment
- Ear protection
- Warming blankets

- Time
 - Critically ill
 - 1 hour
 - Stable
 - 30 minutes

Challenges of Transportation

- Temperature regulation
- Intensive monitoring
- Support apparatus
 - Respiratory
- Time for transport
- Time to wait for imaging
- Exposure to infection/noise
Transportation

- MR compatible incubator

Commercial unit built by Lammers

Motion
Sedation of the Neonate

- Neuronal cell death after neonatal exposure sedatives/anesthetics

- Chloral hydrate
 - >12 hours increased sedation
 - Increased bradycardia events

 Allaegaert K et al. Paediatr Anaesth 2008; 18(12):1270-1
Lack of Sedation

• Fed 30-60 minutes before the scan started
 – Held/rocked
 – SweetEase or a small amount of formula at time of scan

• Immobilization
 – Swaddle blankets/linens and tape
 – VacFix/Medvac bag
 • 10% failure rate

• Medication
 – 0.1 mg/kg midazolam X2 through the IV
MRI Safety

- Gadolinium
 - Off label, due to immature kidney function
 - Gadavist
- Hearing
 - Mimi ear muffs and ear plugs
 - Uninterrupted sleep < 45 dBA
 - Prevent physiologic distress < 65dBA
 - Hearing Loss > 85 dBA
- MR compatibility
 - Wand
- Specific Absorption rate
 - 3W/Kg for 10 minute period
MRI Timing

- < 24 hours falsely negative
- 1-2 weeks ideal
- >2 weeks chronic
 - Pattern may be more difficult
Technical Considerations

- Coils
 - Smallest coil
 - Adult knee
 - Neonatal head coil

Wardray Premise
Imaging

- Infant brain—92-95% water
 - Decreases over the first 2 years to 80-85%

- Imaging
 - Increase T1 and T2 relaxation times
 - T1 imaging TR 500-850 (T1 Flair 2200 msec)
 - T2 imaging TR 3500-5000
 - Diffusion higher ADC values
 - B value 800 and 1000 sec/mm²
Myelination

- **T1** – increased glycolipids
 - 6-8 months
- **T2** – decreased free water molecules
 - 6-18 months
Normal Myelination in Neonate

- T1 myelination in weeks
 - 24-28 - Dorsal brainstem
 - 28 - Subthalami and ventrolateral nucleus
 - 36-37 - Posterior limb internal capsule (T2-40)
 - 38-40 - Corticospinal central coronal radiate and perirolandic white matter
MRI 40 Weeks
Germinal Matrix Involution in Weeks

- 27- VZ (ependymal)
- 34/36 -SVZ (subependymal)
 - 33
 - Roof temporal horns
 - Lateral occipital horn
 - 36
 - ganglionic eminence
 - Postnatal
 - frontal periventricular
Normal Germinal Matrix
Sulcation

16 w
- Interhemispheric
- Sylvian

22-25 w
- Parietooccipital
- Callosal
- Calcarine
- Cingulate

26-28 w
- Central (26)
- Precentral (27)
- Superior Temporal
- Marginal
- Postcentral (28)

29-34 w
- Superior frontal
- Inferior frontal
- Inferior temporal

>30 w
- Secondary
- Tertiary
Subdural in Newborns

- 46%
- Supratentorial (posterior cranium)
- Infratentorial
- < 3mm
- Resolve 1 month

Rooks VJ. Prevalence and Evolution of Intracranial Hemorrhage in Asymptomatic Term Infants. AJNR. 2008; 29: 1082-89
Susceptibility Weighted Imaging (SWI)
MRA/MRV
Spectroscopy

2.02 ppm - N-acetyl-aspartate - neuronal marker

3.23 ppm - Choline - cell membrane

3.02 ppm - Creatine - cellular energy

3.56 ppm Myo-inositol - hormonal and enzymatic regulation, glial

1.33 ppm - Lactate - anaerobic

2.1/2.5 ppm Glutamine/Glutamate - excitatory and detox

.8, 1.2, 1.5 ppm - Lipids
Spectroscopy

- Potential Pitfalls
 - NAA low in newborn
 - Adult at 2.5 years
 - Lactate varies with maturity
 - Term BG Lac/NAA .25
 - Absent few months
 - Variable different regions
 - Do not include CSF
 - Solvent for phenobarbital 1.15 ppm
 - Porpan 1,2 diol
High lactate and low NAA poor outcome
<table>
<thead>
<tr>
<th>Mach. #</th>
<th>Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>NA</td>
<td>7</td>
</tr>
<tr>
<td>Cr</td>
<td>10</td>
</tr>
<tr>
<td>Ch</td>
<td>10</td>
</tr>
<tr>
<td>mI</td>
<td>16</td>
</tr>
<tr>
<td>H2O</td>
<td>60489</td>
</tr>
<tr>
<td>RMS Noise</td>
<td>0.88</td>
</tr>
<tr>
<td>Cr SNR</td>
<td>11.53</td>
</tr>
</tbody>
</table>

Voxel Location

R/L A/P S/I
Ctr L14.1 A63.5 S24.5
Dim 15.0 15.0 15.0

R/L A/P S/I
Ctr L13.4 A45.5 S24.5
Dim 15.0 15.0 15.0
Conclusion

- Brain MRI adjunct
- Communication/preparation
- Monitoring/sedation
- Imaging amended
- Know what is normal