Femoroacetabular impingement
in adolescents and young adults – an update

Lene Bjerke Laborie, MD, PhD
Paediatric Radiology Department, Haukeland University Hospital Bergen, Norway
Associate Professor, Department of Clinical Medicine, University of Bergen
No conflicts of interest or commercial disclosures
Key Notes

- Anatomical and pathological mechanisms
- Radiological assessment
- Aetiology
- Epidemiology
- Management
Femoroacetabular Impingement (FAI)

- Abnormal relationship: proximal femur - acetabulum
- Hip pain and early degenerative change

• Challenging diagnosis

• Clinical and radiological criteria

• Long-standing hip pain

• Reduced hip motion
 – Internal rotation and flexion

• Positive test for anterior impingement
Anatomy - Radiology - Aetiology - Epidemiology - Management

- **A: Normal**

- **B: Cam-type**

- **C: Pincer-type**

• Standardised AP view, preferably weight-bearing
 – Tilt and Rotation

• Lateral view

• CT scan, MRI, MRI arthrography
Cam-type

A
Pistol-grip Deformity

B
Focal prominence

C
Flattened lateral head

Alpha angle

Cam-type

Lateral frog-leg view

Antero-posterior (AP) view
Pincer-type

A Posterior wall sign (PWS)
B Cross-over sign (COS)
C Excessive acetabular coverage

• ‘Idiopathic’

• Slipped capital femoral epiphysis (SCFE)

• Perthes’ disease (CLP)

• Other

• Other risk factors:
 – Increased BMI
 – Age
 – Race
 – Genetics
 – Heavy workload
 – Certain sport activities during growth

Murray. The aetiology of primary osteoarthritis of the hip. *Br J Radiol* 1965
• Cam development in high-level athletes during skeletal maturation – Increased stress on femoral physis?

• Ice-hockey, basketball, possibly soccer

• Cam deformity recognisable and present from age 13 years

• Gradual development of cam lesion during skeletal maturation

Male ice-hockey player, 21 yrs old

Courtesy of Dr. Erik Vang, Head Senior Consultant, Musculoskeletal radiologist, Betanien Hospital, Bergen, Norway
SCFE, female, 40 yrs

Perthes, boy 12 yrs
• Age - Gender - Race

• Radiological and Clinical assessment

• Definition of disease

• Clinical symptoms in up to 15% of healthy adult population

• Positive impingement test in population-based study of 19 year-olds: 7.3% of males, 4.7% females

Leunig, Ganz. [Femoroacetabular impingement. A common cause of hip complaints leading to arthrosis]. Unfallchirurg 2005

Norway:
-Cam-type: 35% of Males, 10% of Females (AP and frog-leg, 874 M, 1207 F, 19 yrs)
-Alpha angle: Higher cut-off values, Gender-specific values

Denmark:
Cam-type: 17% of Males, 4% of Females (only AP view, 1184 M, 2018 F, 22-93 yrs)

USA:
Cam-type: 24% Boys, 10% Girls (Pelvic CT, 276 M, 282 F, 10-18 (average 14) yrs)

• Non-operative management

• Surgery - Ongoing debate

• Arthroscopic surgery vs. Open surgery with femoral head dislocation, or a combination of the two surgical methods

• Arthroscopic surgery prefered treatment in pediatric population

Clohisy, St John, Schutz. Surgical treatment of femoroacetabular impingement: a systematic review of the literature. *Clin Orth Relat Res* 2010
Future perspectives

• High-level sports activity during growth may be a new and distinct risk factor for a cam-type deformity. Further research needed.

• Radiographic markers and values associated with FAI are not established in the paediatric population

• Composite scoring system: Clinical and radiological markers

• Further studies in the paediatric population are required

• Genetic aspects