Current Trends in Pediatric GU Imaging
European Perspective

Pierre-Hugues Vivier, MD, PhD

CHU C. Nicolle, Rouen, France
Générale de Santé, Hôpital Privé de l’Estuaire, Le Havre, France
Urinary tract infection

- 1.6% of boys / 7.8% of girls

- 10-40% of children: permanent renal scarring
 - Benador D. Lancet 97.
 - Hewitt IK. Pediatrics 08.

- May lead to:
 - Recurrent pyelonephritis
 - Poor renal growth, impaired GFR
 - Early hypertension, preeclampsia
 - End-stage renal disease
Urinary tract infection

- Imaging: tailor the management of patients

American Academy of Pediatrics
2011
CLINICAL PRACTICE GUIDELINE

European Association of Urology
2015
Guidelines
Urinary Tract Infections in Children
Urinary tract infection

Ultrasound: YES

American Academy of Pediatrics
Clinical Practice Guideline 2011

European Association of Urology
Urinary Tract Infections in Children 2015
• 394 children 2-24 months, prenatal US: normal
• First UTI
• Abnormal US: 22% (dilatation = 13%)

US : systematic after the first UTI even if normal prenatal US
Urinary tract infection

Ultrasound: When?

- Not during the acute phase: can be misleading
- During the 48h of treatment if:
 - Clinical illness unusually severe
 - No clinical improvement
- Early US in case of febrile UTI or urosepsis
- Can be delayed in those with a previous normal US
Urinary tract infection

Ultrasound: Bladder and bowel dysfunction (BBD)

- Not mentioned

- Look at:
 - Rectal diameter
 - Post-void residual (PVR)
Urinary tract infection

Ultrasound: Bladder and bowel dysfunction (BBD)

Constipation must be considered if:
Pelvic US shows filling of the rectum > 30 mm

Supported by:
Berger MY. J Pediatr, 12.
Joensson IM. J Urol, 08.
Klijn AJ. J Urol, 04.
Singh SJ. J Pediatr Surg, 05.

Not confirmed by:
Mason MD. J Ped Urol 15.
Urinary tract infection

Abnormal if:
4-6 years: > 30 mL
7-9 years > 22 mL
10-12 years > 19 mL

If: Pre-void vesical volume > 50 mL

Urinary tract infection

VCUG

• Not after the first UTI

• Performed if:
 • Hydronephrosis
 • Scarring
 • Findings suggestive of high-grade VUR or obstructive uropathy
 • Atypical or complex clinical circumstances
 • Recurrence of febrile UTI

• Recommended after the first UTI (≠ AAP) in:
 • Infants (<12 months)
 • Girls
 • Boys if recurrence
Urinary tract infection

- Meta-analysis
- 1091 children: 2–24 months

TABLE 4 Recurrences of Febrile UTI/Pyelonephritis in Infants 2 to 24 Months of Age With and Without Antimicrobial Prophylaxis, According to Grade of VUR

<table>
<thead>
<tr>
<th>Reflux Grade</th>
<th>No. of Recurrences</th>
<th>Total N</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>11 6%</td>
<td>163</td>
<td>.15</td>
</tr>
<tr>
<td>I</td>
<td>2 6%</td>
<td>35</td>
<td>1.00</td>
</tr>
<tr>
<td>II</td>
<td>10 8%</td>
<td>124</td>
<td>.95</td>
</tr>
<tr>
<td>III</td>
<td>40 28%</td>
<td>145</td>
<td>.29</td>
</tr>
<tr>
<td>IV</td>
<td>21 43%</td>
<td>49</td>
<td>.14</td>
</tr>
</tbody>
</table>
Urinary tract infection

- Meta-analysis
- 1091 children: 2–24 months

TABLE 4 Recurrences of Febrile UTI/Pyelonephritis in Infants 2 to 24 Months of Age With and Without Antimicrobial Prophylaxis, According to Grade of VUR

<table>
<thead>
<tr>
<th>Reflux Grade</th>
<th>No. of Recurrences</th>
<th>Total N</th>
<th>Prophylaxis</th>
<th>No. of Recurrences</th>
<th>Total N</th>
<th>No Prophylaxis</th>
<th>No Prophylaxis</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>11 6%</td>
<td>163</td>
</tr>
<tr>
<td>I</td>
<td>7</td>
<td>210</td>
<td>3%</td>
<td></td>
<td></td>
<td>2 6%</td>
<td>35</td>
</tr>
<tr>
<td>II</td>
<td>2</td>
<td>37</td>
<td>5%</td>
<td></td>
<td></td>
<td>2 6%</td>
<td>35</td>
</tr>
<tr>
<td>III</td>
<td>11</td>
<td>133</td>
<td>8%</td>
<td></td>
<td></td>
<td>10 8%</td>
<td>124</td>
</tr>
<tr>
<td>IV</td>
<td>31</td>
<td>140</td>
<td>22%</td>
<td></td>
<td></td>
<td>40 28%</td>
<td>145</td>
</tr>
<tr>
<td>V</td>
<td>16</td>
<td>55</td>
<td>29%</td>
<td></td>
<td></td>
<td>21 43%</td>
<td>49</td>
</tr>
</tbody>
</table>

\[P \text{ (Prophylaxis)} = .15 \]

\[P \text{ (No Prophylaxis)} = 1.00 \]
Urinary tract infection

- 99mTc-DMSA renal scintigraphy:
- Not recommended
- 1 mSv
Based on 2 prospective studies

- **Swedish Reflux trial.** J Pediatr Urol, 2011. (n=203)
- **RIVUR Study.** NEJM, 2014. (n=607)

- 203 children, (12-24 months old) with VUR grade III or IV and IV
- Follow-up of 2 years

Antibiotic prophylaxis:

In girls: 19% of recurrent febrile UTI vs 57% on surveillance. \((p=0.0002)\)

In boys: recurrence low. No difference.

- 203 children, (12-24 months old) with VUR grade III or IV and IV
- Follow-up of 2 years

Figure 1. Febrile UTI recurrence rate by gender and treatment group.

Figure 2. New renal damage in children with dilating VUR by allocated treatment. (Modified from Brandstrom et al. The Swedish Reflux Trial in Children: IV. Renal Damage. J. Urol. 2010; 184:292–7. Reprinted by permission.)

Antibiotic prophylaxis: Significant reduction of renal scars in comparison with surveillance and endoscopic treatment.
Urinary tract infection

RIVUR Study. NEJM, 2014.
- 607 children, (2 months-6 years) with VUR grade I to IV
- Antimicrobial prophylaxis vs placebo
- Follow-up of 2 years

Antibiotic prophylaxis:
- 50% decrease of recurrent febrile UTI
 - ↓ 80% in case of BBD
 - ↓ 60% in case of febrile index UTI
- No effect on renal scarring
Urinary tract infection

- 986 children, (2 months-6 years) with VUR low grade (I-II) and high grade (III-IV)
- Antimicrobial prophylaxis vs no prophylaxis

Supports antibiotic prophylaxis in all children with VUR regardless of reflux grade

- Number needed to treat (NNT): low grade = 15.36 / high grade = 12.15
Urinary tract infection

Prophylaxis necessary in case of VUR

VUR screening necessary

Bottom-up approach

VCUG $0.1-0.55\text{ mSv}$

DMSA scintigraphy

Top-down approach

DMSA scintigraphy 1 mSv

VCUG
Urinary tract infection

- 99mTc-DMSA renal scintigraphy:
 - *Reference method for acute pyelonephritis*
 - Rarely performed in practice
 - 1 mSv
 - Long (>3h after DMSA injection)
 - Expensive

- *Reference method for renal scarring*
MRI: DWI
DWI
Agreement (concordance)

<table>
<thead>
<tr>
<th></th>
<th>Per kidney (n=78)</th>
<th>Per zone (n=234)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T2-W</td>
<td>κ =0.69 p = 0.0010</td>
<td>κ =0.63 p < 0.0001</td>
</tr>
<tr>
<td>DWI</td>
<td>κ =0.92 p = 0.2500</td>
<td>κ =0.92 p = 0.2266</td>
</tr>
</tbody>
</table>

Agreement defined as *(Majd M. Radiology, 2001)*

- **excellent,** κ > 0.75
- **good,** κ = 0.40 – 0.75
- **poor,** κ < 0.40.

Vivier PH. Eur Radiol, 2014.
DWI

- Comparable results to Gd-T1-W imaging.
- Excellent interobserver reproducibility.
- Not suited in children < 6 months

Diffusion tensor imaging

DWI
Respiratory triggering
7 min ± 2.4 (SD)

DTI
Free breathing
4.3 min
Renal scars
With contrast

- *Cerwinka WH. J Pediatr Urol, 14. (n=25)*
 - MRU: Sens = 100% and a Spe = 100%

« MRU is superior to DMSA scan in the identification of renal parenchyma defects. »

Without contrast

- *Kavanagh EC. Pediatr Radiol, 05. (n=37)*
 - MRU: Sens = 77% and a Spe = 87%
 - “The true sensitivity and specificity of MRI for the detection of renal defects would in fact be higher if a true gold standard were available”.

- *Koçyiğit A. Pediatr Nephrol, 14. (n=49)*
 - MRU: Sensitivity = 80% and specificity = 82.6%
MRI

- **MRI: DTI + T2-W (± T1-Gd)**
 - *Comprehensive examination within 15 minutes*
 - **DTI: hyperintense areas**
 - Comparable results to Gd-T1-W imaging with excellent interobserver reproducibility
 - **T2-W: morphology**
 - Abscess, renal scarring, CM differentiation, dilatation

- **Advantages:**
 - **No need for IV access:** more acceptable to both children and their parents
 - **No contrast injection:** no NSF issue
 - **No radiation exposure:** unlike 99mTc-DMSA scintigraphy (1 mSv)
 - **No respiratory triggering:** unlike DWI
Conclusion

- US: first-line imaging

- Benefit of prophylaxis in VUR
 - Need to prove VUR even in case of normal US?

- Promising role of MRI