Congenital Diaphragmatic Hernia: Fetal Imaging Tips + Tricks

Christopher Cassady MD, FAAP
Fetal and Neonatal Imaging
Edward B. Singleton Department of Pediatric Radiology
Texas Children’s Hospital
CDH: Tips + Tricks

IMPORTANT DECISIONS, and tips to help make them

- Where is the hernia (and why do we care)?
- Is the liver up, and how much makes a difference?
- Is there a hernia sac?
- Is the patient a candidate for in utero therapy?
- Is there anything else I should look for?
CDH: Tips + Tricks

IMPORTANT DECISIONS, and tips to help make them:

• Where is the hernia (and why do we care)?
CDH: Tips + Tricks

Hernia types

- Intrapleural
- Mediastinal
CDH: Tips + Tricks

Intrapleural hernias

90% of CDH cases
Incomplete closure of posterior pleuropertitoneal canal (Bochdalek)
Left 80-85%, right 10-15% and bilateral 2-5%
Complications: pulmonary hypoplasia, persistent PAH
CDH: Tips + Tricks

Mediastinal hernias: Ventral/Retrosternal
CDH: Tips + Tricks

Mediastinal hernias: Ventral, Morgagni-type
CDH: Tips + Tricks

Mediastinal hernias: Hiatal
TIP: stomach up without liver up on the right is a HH
CDH: Tips + Tricks

Why do we care if it’s intrapleural or mediastinal?

Lung volumes make a difference
Pulmonary Hypoplasia

How lung volumes are measured makes a difference

The Lung:Head ratio (LHR)

CDH: Tips + Tricks

Pulmonary Hypoplasia

How lung volumes are measured makes a difference

Predict mortality at >85%

LHR <1.0 (with liver up)

o/e-LHR <0.25 (L, liver up)

<0.45 (R)

CDH: Tips + Tricks

Observed/Expected Total Lung Volume

Use quality serial contiguous images.
Freehand ROI tool outlines higher-signal lung.
Sum areas from contiguous slices and multiply by slice thickness to obtain Total Fetal Lung Volume (TFLV).
Divide this observed value by the expected mean fetal lung volume for gestational age (= 0.0033 x GA^{2.86})^1 or fetal body volume^2.

O/E TFLV < 32% is poor

CDH: Tips + Tricks

IMPORTANT DECISIONS, and tips to help make them

- Where is the hernia (and why do we care)?
- Is the liver up, and how much makes a difference?
US

stomach at level of 4-chamber view of heart
mediastinal shift
bowel in chest
scaphoid abdomen
liver in chest ventral to the stomach
CDH: Tips + Tricks

Herniated liver makes a difference

Liver herniation as predictor of outcome
Liver down: 79% survival
Liver up: 41% survival

In our series, %LH > 20 is predictive of increased mortality and the need for ECMO, independent of lung volumes.

CDH: Tips + Tricks

<table>
<thead>
<tr>
<th>Variable</th>
<th>cut-off value</th>
<th>Area under curve</th>
<th>95% confidence interval</th>
<th>Sensitivity / Specificity (%)</th>
<th>Accuracy (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MORTALITY</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LHR</td>
<td><1.40</td>
<td>0.70</td>
<td>0.57-0.84</td>
<td>65 / 71</td>
<td>69</td>
</tr>
<tr>
<td>o/e-LHR</td>
<td><0.41</td>
<td>0.72</td>
<td>0.59-0.85</td>
<td>68 / 69</td>
<td>69</td>
</tr>
<tr>
<td>o/e-TLV</td>
<td><0.32</td>
<td>0.78</td>
<td>0.67-0.89</td>
<td>78 / 74</td>
<td>77</td>
</tr>
<tr>
<td>PPLV</td>
<td><10.3</td>
<td>0.74</td>
<td>0.63-0.88</td>
<td>77 / 74</td>
<td>74</td>
</tr>
<tr>
<td>%LH</td>
<td>>21%</td>
<td>0.75</td>
<td>0.62-0.85</td>
<td>72 / 79</td>
<td>77</td>
</tr>
<tr>
<td>LITR</td>
<td>>14</td>
<td>0.72</td>
<td>0.55-0.86</td>
<td>67 / 81</td>
<td>77</td>
</tr>
<tr>
<td>LHR+%LH</td>
<td>0.75</td>
<td>0.75</td>
<td>0.61-0.89</td>
<td>73 / 72</td>
<td>75</td>
</tr>
<tr>
<td>LHR+LITH</td>
<td>0.76</td>
<td>0.75</td>
<td>0.64-0.90</td>
<td>70 / 74</td>
<td>76</td>
</tr>
<tr>
<td>o/e-LHR+%LH</td>
<td>0.77</td>
<td>0.77</td>
<td>0.63-0.91</td>
<td>71 / 73</td>
<td>75</td>
</tr>
<tr>
<td>o/e-LHR+LITH</td>
<td>0.78</td>
<td>0.78</td>
<td>0.65-0.91</td>
<td>73 / 74</td>
<td>75</td>
</tr>
<tr>
<td>o/e-TLV+%LH</td>
<td>0.83</td>
<td>0.83</td>
<td>0.70-0.91</td>
<td>81 / 83</td>
<td>83</td>
</tr>
<tr>
<td>o/e-TLV + LITR</td>
<td>0.80</td>
<td>0.80</td>
<td>0.70-0.90</td>
<td>79 / 81</td>
<td>80</td>
</tr>
<tr>
<td>PPV + %LH</td>
<td>0.80</td>
<td>0.80</td>
<td>0.69-0.89</td>
<td>79 / 80</td>
<td>79</td>
</tr>
<tr>
<td>PPV + LITR</td>
<td>0.79</td>
<td>0.79</td>
<td>0.68-0.90</td>
<td>79 / 81</td>
<td>80</td>
</tr>
</tbody>
</table>

CDH: Tips + Tricks

IMPORTANT DECISIONS, and tips to help make them

- Where is the hernia (and why do we care)?
- Is the liver up, and how much makes a difference?
- Is there a hernia sac?
CDH: Tips + Tricks

A hernia sac makes a difference: 15% of cases

CDH: Tips + Tricks

IMPORTANT DECISIONS, and tips to help make them

- Where is the hernia (and why do we care)?
- Is the liver up, and how much makes a difference?
- Is there a hernia sac?
- Is the patient a candidate for in utero therapy?
CDH: Tips + Tricks

The Treatment Options

Prenatal
- Termination
- No intervention
- Balloon occlusion of the trachea (FETO)

Delivery/Postnatal
- General supportive care
- ECMO, including EXIT-to-ECMO
CDH: Tips + Tricks

The Treatment Options

FETO
CDH: Tips + Tricks

The Treatment Options

FETO
CDH: Tips + Tricks

The Treatment Options

FETO: Fetal Endotracheal Occlusion

The preliminary data:

In O/E LHR <0.25, anticipate 15% (l up) – 30% (l down) survival if L-CDH <5% with R-CDH

With FETO,
52% survival for L-CDH
29% for R-CDH

CDH: Tips + Tricks

The Treatment Options

FETO: Fetal Endotracheal Occlusion TOTAL trial

- Isolated left intrapleural CDH for FETO b/t 27 and 30 weeks’ GA
- Severe cases
 - High risk of severe pulmonary hypoplasia \(o/e-LHR<0.25 \)
 - Liver herniation
 - High risk of pulmonary hypertension \(Cont-VI<20\% \)
- No other significant anomalies
CDH: Tips + Tricks

Imaging post intervention

Pre post
CDH: Tips + Tricks

Gestational age at delivery makes a difference

An intervention is unlikely to help if it results in significant preterm delivery.

Technical advances have pushed delivery to late preterm. Elective balloon puncture or removal between 34-35 weeks.
CDH: Tips + Tricks

IMPORTANT DECISIONS, and tips to help make them:

• Where is the hernia (and why do we care)?
• Is the liver up, and how much makes a difference?
• Is there a hernia sac?
• Is the patient a candidate for in utero therapy?
• Is there anything else I should look for?
CDH: Tips + Tricks

Associated abnormalities make a difference

<table>
<thead>
<tr>
<th>Affected System</th>
<th>Frequency</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cardiac</td>
<td>35%</td>
<td>Tetralogy of Fallot, VSD, coarctation, HLHS</td>
</tr>
<tr>
<td>Genitourinary</td>
<td>10%</td>
<td>Horseshoe kidney, crossed-fused ectopia, lower urinary tract obstruction</td>
</tr>
<tr>
<td>Gastrointestinal</td>
<td>10%</td>
<td>Esophageal atresia/tracheoesophageal fistula, bowel atresia</td>
</tr>
<tr>
<td>Central nervous</td>
<td>7%</td>
<td>Holoprosencephaly, spina bifida</td>
</tr>
<tr>
<td>Pulmonary</td>
<td><5%</td>
<td>Sequestration, pleural effusion</td>
</tr>
<tr>
<td>Systemic (Syndromes)</td>
<td>5-10%</td>
<td>Beckwith-Wiedemann, Fryns, Brachmann-de Lange</td>
</tr>
</tbody>
</table>
Clinical Features of Fryns Syndrome*

Broad nasal bridge or hypertelorism
Hypoplastic lungs or abnormal lobation
Diaphragmatic hernia, diaphragmatic anomalies
Cardiac defects
Coarse facial features
Gastrointestinal tract anomalies, abnormal bowel fixation
Distal digital hypoplasia
Ear abnormalities
Microretrognathia
Macrostomia
Genital anomalies
Renal anomalies
Polyhydramnios
Central nervous system anomalies
Cleft lip, cleft palate
Talipes equinovarus
Corneal abnormalities
Hypoplastic nipples
Cystic hygromas
Osteochondrodysplasia
Adrenal fusion†

*Listed in decreasing frequency of clinical presentation. This is a compilation of data from the reported cases in the literature.1–5,7–16
CDH: Tips + Tricks

Jugular vein size
