Pediatric Epilepsy: A Clinician’s Perspective

Mary Connolly MB, FRCPA, FRCPA, FRCPA(Edin)
Division of Pediatric Neurology, Dept of Pediatrics
Disclosures

- Co-Chair Canadian Epilepsy Network
- Research Funding
 - Canadian Institute for Health Research
 - The Alva Foundation
 - Biocodex
 - Sage Therapeutics
 - Novartis
 - Honoraria donated to Epilepsy Research & Development Fund
Objectives

- To review
 - Epilepsy management in 2017
 - Types of epilepsy surgery
 - Challenges in identification of patients who will benefit from surgery
 - Importance of brain imaging in the investigation of epilepsy
Key Messages

- Epilepsy is common and if uncontrolled has high morbidity and mortality
- Surgery is under utilized to treat epilepsy
- High quality structural and functional neuroimaging is of critical importance to identify lesions and eloquent networks
Epilepsy

- Epilepsy affects ~3% of population
- 2/1000 in first 3 years of life
- Is treatment resistant in 30%
- Cognitive and neuropsychiatric co-morbidity in 1/3 of patients
- Negative impact on quality of life
- 5X increased mortality with uncontrolled seizures
Epilepsy and Learning

- Berg et al., Neurology 2012
- Prospective cohort of children with epilepsy diagnosed < 8 years
- Early age at seizure onset and pharmaco-resistance resulted in lower IQ
- Pharmaco-resistance had most profound impact in 0-3 year group
Treatment of Epilepsy in 2017

- Anti-seizure medications
- Dietary therapies
- Surgery
- Brain Modulation
 - Vagus nerve stimulation, Deep brain stimulation
- Thermocoagulation
- Personalized treatment guided by genomics
Causes of Epilepsy

Types of Epilepsy Surgery

- Resective:
 - Lesionectomies, Cortical resections, amygdalo-hippocampectomy
- Disconnective surgeries:
 - Hemispheric, multilobar, MSTs, corpus callosotomy
- Vagus nerve stimulation
- Deep Brain stimulation:
 - Anterior or centromedian nucleus of thalamus, hippocampus
Surgery vs Medical Treatment in Temporal Lobe Epilepsy

- Wiebe et al., NEJM 2001 RCT
 - Seizure free outcome at 1 year: 58% v 8%
 - Improvement in QOL, employment and school attendance in surgical group

- Engel et al., JAMA 2012 RCT
 - Early surgical vs medical management in TLE
 - Seizure free at 2 years: 11/15 treated surgically vs 0/23 in medical group
Pre-Surgical Work-Up

- **Phase 1:**
 - High resolution MRI
 - Video-EEG monitoring
 - Neuropsychological testing
 - Functional neuroimaging
 - SPECT, PET, fMRI, MEG
- **Phase 2:**
 - Invasive EEG monitoring Grids, Stereo-EEG
Case 1:

- 16.5 year old right handed male
- Seizure onset at 14 years
- No aura, arrest of activity, staring, rapid breathing, yawning, oral automatisms, +/- manual automatisms, may turn in a circle, confusion
- Duration 10-45 seconds, 2-3 sz weekly
- Bilateral convulsive seizures 1/month
Case 1

- Seizures unresponsive to 5 medications
- Neuropsychology:
 - Verbal IQ 50th Centile, Performance 63rd C
 - Mild dysfluency and inattention
- Interictal EEG:
 - Left frontal delta + anterior frontal spikes
 - Bilateral frontal temporal spike wave L>R
- Ictal EEG: Left frontotemporal changes
Subtraction Ictal SPECT coregisterd with MRI
Summary: Pre-Surgical Work-Up

- Seizure semiology: temporal
- No MRI lesion
- Ictal EEG non-localizing at seizure onset
- MEG: cluster of left frontal spikes
- Subtraction Ictal SPECT: left frontal hyperperfusion
- Decision: Electrocorticography and if negative leave subdural grid electrodes in place
Electro-corticography: Left Frontal.
Electrographic Seizures x4
Case 1

- Pathology: Focal cortical dysplasia type IIa
- Seizure free since surgery (7.5 years)
- Key Points:
 - Lateral frontal lobe seizures may have similar clinical features to temporal lobe seizures
 - SISCOM and MEG: Left frontal abnormalities
 - Surgery performed in one stage
 - Invasive EEG and associated morbidity avoided
Case 2

- 12 year old R handed girl with seizure onset at age of 11 years
- Seizure type #1:
 - Aura: +/-feeling in abdomen, or mouth
 - Right arm/leg extension, left hand to mouth, giggling, speech arrest, aware, last < 20 seconds
 - Clusters, multiple seizures per day, hour,
- Failed 5 anti-seizure medications
Seizure Onset L mid Central
Left Lateralized (Typical) Language Organization

Laterality

LI

-1

-0.8

-0.5

-0.3

0

0.3

0.5

0.8

1

FDR

0.1

0.05

0.01

0.005

0.001

Left

Right

Laterality

FDR

p < 0.001
Phase 1 Evaluation

- 3T MRI negative
- Interictal and ictal EEG left mid central (frontal)
- Neuropsychology: executive dysfunction
- Ictal SPECT not done as seizures so short
- fMRI: Left hemisphere language

Recommendation:
- Phase 2 evaluation with subdural electrodes covering left frontal, parietal lobes including medial surface (SMA, cingulate)
Seizures

1G 8x8

4G 2x5

3G 1x6

2G 1x4

5G 1x4
Phase 2: Ictal Onset
SEIZURE #9 GRIDS: 2G 1x4, 3G1x6, 4G2x5, 5G1x4
Case 2: Follow-up

- Left mesial frontal resection
- Pathology: Focal cortical dysplasia type IIa
- No complications
- Seizure free at 16 months
- On 2 anti-seizure medications
Epilepsy Surgery in Tuberous Sclerosis Complex

cortical tubers

cytomegalic neurons

and balloon cells

mTOR pathway
Tuberous Sclerosis Complex (TSC)

- 90% develop epilepsy
- Onset often in 1st year of life
- Uncontrolled epilepsy: high risk of Autism and intellectual impairment
- Advances: Biomarkers of epilepsy and treatment prior to seizure onset
- mTOR inhibitors effective for epilepsy
Epilepsy Surgery in TSC

Challenges:
- Multiple tubers
- Multifocal EEG abnormalities
- Ictal EEG often non-localizing
- SISCOM, AMT-PET and MEG very useful to identify the epileptogenic tuber(s)
Depth Electrode in Tuber
• Seizure-Free: 47%
• Rare Seizures: 26%
• 50-90% Decrease: 16%
• < 50% Decrease: 5%
• Unchanged: 8%

• Median F/U 2.4 years (range 0.2-16.2)
• Median current AEDs 2 (range 0-5)
• Median duration seizure-free 2.5 years (range 1-9)
• Seizure-free off medication: 1
Epilepsy Surgery in TSC

- Epilepsy surgery results in good outcomes in carefully selected patients
- Surgery should be considered early
- Earlier surgery may improve developmental outcomes
mTOR Inhibitors and Epilepsy

- **TSC mouse models:**
 - Rapamycin reversed astrogliosis/neuronal disorganization
 - mTOR inhibitors:
 - Prevent development of seizures
 - Improve learning and attention

- **Clinical trials:**
 - Rapamycin reduced seizure frequency
 - Everolimus Phase 1/2 and EXIST-1 SEGA trials showed reduction of seizures in some patients
 - EXIST 3 trial: Everolimus effective in reducing seizures
Management of Gelastic Seizures and Hypothalamic Lesions
Gelastic Seizures

- Classically with hypothalamic lesions
- LASER thermocoagulation is currently preferred treatment
- Radiosurgery and resection also options
Hemispheric Surgery

- Sturge-Weber syndrome
- Infarction
- Malformations
 - Cortical dysplasia
 - Hemimegalencephaly
- Rasmussen’s encephalitis
- Hemispheric tumors
Anatomical hemispherectomy

Functional Hemispherectomy
Sturge - Weber syndrome
Functional Neuroimaging in Hemispheric Disorders

- Allow assessment of extent of disease in affected hemisphere
- Allow assessment of function of contralateral hemisphere
- May not be necessary in some cases
Conclusions

- Epilepsy Surgery in children
 - At best can result in a complete cure
 - Is not a treatment of last resort
 - Should be considered earlier
 - Opportunity to improve developmental outcome and long term economic impact
 - Extratemporal more common than temporal
Unique Challenges in Children

- Identification of brain malformations may be difficult to detect due to brain maturity
- Effects of seizures and inter-ictal epileptiform activity on brain development
 - Epileptic encephalopathy
 - Malformations of brain development
 - Tuberous Sclerosis complex
 - Hypothalamic tumors
Why is Epilepsy Surgery Underutilized?

- Lack of knowledge about efficacy
- Fear about surgical morbidity
- Lack of knowledge about eligibility criteria for surgery
- Lack of understanding about negative impact of uncontrolled epilepsy on brain development
SAM Question 1

Video-EEG monitoring during ictal and interictal SPECT studies is

A. Unhelpful

B. Necessary for accurate determination of whether the patient is having a seizure

C. Adds unnecessary expense
SAM Question 2

For accurate ictal SPECT studies the tracer injection should be administered

A. Within 20 seconds of seizure onset
B. Within 30 seconds of seizure onset
C. > 30 seconds of seizure onset
D. As soon as seizure is over

SAM Question 3

The accuracy of ictal SPECT is highest with
1. Visual analysis of ictal scan alone is used
2. Visual analysis of ictal and interictal scans
3. Voxel based co-registration techniques such as Subtraction ictal SPECT coregistered to MRI

Acknowledgements: Epilepsy Surgery Team

- Neurosurgery: Dr. Paul Steinbok, Dr. Ash Singhal
- Neurology: Drs. L Huh, M Connolly, A Datta, Epilepsy fellows, Neurophysiology technologists and Dr. Peter Wong
- Nursing: Ms Kelly Andersen
- Neuropsychology: Dr Sare Akdag
- fMRI: Dr. Bruce Bjornson, Mr K Fitzpatrick
- Neuroimaging: Drs M Sargent, Mignone
- Nuclear Medicine: Dr. H. Nadel
- ICU, Anesthesia and OR Staff Nurses
- Neuropathology: Dr. Henderson, Dr. C Dunham

Children and their families who have taught me so much
References

Epilepsy Surgery Techniques: Guest Editors A Cukiert& B Rydenhad; Epilepsia - Supplement 1, April 2017