Non-Oncologic Applications for PET/MR: Neuro, Cardiac, Rheumatologic, and Orthopedic Indications

Stephan D. Voss, MD, PhD
Department of Radiology
Boston Children’s Hospital
Harvard Medical School
Disclosures

- No financial disclosures

- We do not have a PET/MRI scanner
Objectives

• To discuss non–oncologic applications of PET/MRI

• To review both FDG and non-FDG PET tracers and the potential for use in PET/MRI

• To appreciate the role of PET/MRI in diagnosis and management of non-oncologic diseases
• **Inflammatory/rheumatologic disease**
 – JRA, JIA, TMJ

• **Musculoskeletal/orthopedic indications**
 – Chronic pain, e.g. low back pain, osteoid osteoma, etc

• **Cardiovascular applications**
 – Congenital heart disease
 – Myocardial ischemia
 – Infection

• **Neurologic applications**
 – Epilepsy

• **Trauma**
 – Non-accidental trauma
 – Concussive traumatic brain injury
• Why PET/MRI
 – Need/opportunity for functional information
 • PET
 – Metabolism
 – Active bone turnover
 – Perfusion
 • MRI
 – Dynamic cardiac function
 – Neuro (DTI, F-MRI)
 – Complementary structural/anatomic information
 – Quantitative changes associating structure and function, e.g. dynamic 18F-PET, bone fat/water content and risk of fracture in metabolic/osteoporotic bone disease
PET for Monitoring of Inflammatory States

- **FDG uptake correlates with disease activity**
 - Swelling, tenderness, synovial thickening (US)
 - More sensitive than clinical Sx
 - Neither MRI nor FDG/PET changes have not yet been found to correlate with treatment outcome

- **FDG Monitoring of disease activity on therapy**
 - Infliximab Rx: FDG correlated with response
 - Early response (change in SUV_{mean} after 2 weeks of Rx) predicted changes in disease activity
 - May predict clinical outcome

- **Currently insufficient data to support routine use (e.g. reimbursement) for diagnosis or therapy evaluation**

Radiotracers

- 18F-FDG
 - non-specific, sensitive for detecting sites of active inflammation
- 18F-NaF
 - 18F ions exchange with –OH on the surface of bone hydroxyapatite \rightarrow 18F-fluoroapatite
 - Uptake function of blood flow and remodeling
 - Rapid uptake/clearance \rightarrow Imaging in 15-30 min.
- 18F-NaF dosimetry (compared to MDP)
 - 250 keV positron energy, 511 keV photons vs 140 keV gamma and different half-lives
 - Overall dose is similar (bone surface $>$ MDP; bladder wall $>$ 18F)

13 yo with joint pain and hypercalcemia

• Active disease:
 - Synovial enhancement
 - Sub-chondral edema
 - FDG uptake
 - Joint fluid

• Inactive disease:
 - Sub-chondral cysts
 - Lack of enhancement
 - No FDG uptake
Temporomandibular Joint Disease

- **Condylar hyperplasia**
- **Rheumatoid arthritis**
 - Synovial enhancement
 - Precursor to bony change
 - Not part of grading system
 - MRI grading
 - Edema, joint space narrowing, erosions, bone destruction
- **JIA**
 - TMJ disease
 - young age, disease duration, polyarticular or systemic dz
 - Often asymptomatic
• No imaging studies evaluating role of FDG and/or 18F-Na
 – Studies in other joints show degree of FDG uptake correlates with disease activity
• One study comparing 18F-Na to MDP: superior diagnostic ability and quantitation for 18F-PET
 Lee et al. Dentomaxillofac Radiol: (2013) 42, 29292350
PET/MRI and Musculoskeletal Disease

• **Low back pain**
 - Non-specific, common in young athletes
 - CT shows pars defects in ~ 50% of patients with focal uptake on 18F-PET
 - MRI may provide better correlation
 - Compression fractures & associated injuries
 - Absence of 18F uptake at site of pars defect may exclude this as a cause of pain
 - 18F uptake may reveal other causes for pain
13 yo female athlete with low back pain after injury

20 yo chronic neuromuscular scoliosis with progressive L>R back pain
17 year old left handed pitcher with right sided pain upon extension
18F-Na PET/MRI and Osteoid Osteoma

14 yo with hip pain and concern for osteoid osteoma. 18F-PET to localize activity relative to joint cartilage
• **Osteoarthritis**
 - Increased bone remodeling marker of OA progression
 - 18F-Na uptake marker of pain
 • Severity correlates with SUV
 - Evaluation of both articular cartilage (MRI) and sub-chondral bone (18F-Na)

• **OA in Children**
 - Hip dysplasia
 - Legg-Calve-Perthes
 - Physical trauma
 • Hips, knees, spine
 - Genetic mutations
 • Cartilage/physeal abnl

Opportunities for PET/MRI in CHD

- **Myocardial ischemia**
 - Suitability for revascularization

- **Structure/function correlates**
 - Wall motion abnormalities
 - Scar tissue vs ischemic
 - Single ventricle pts
 - Cardiomyopathies

- **Myocardial perfusion imaging**
 - Coronary flow reserve

- **Infection**
 - Endocarditis with conduits and valves
 - Requires preparation with high glycemic load diet
Opportunities for PET/MRI in CHD

- **Radiotracers**
 - ^{82}Rb; generator
 - $t_{1/2} = 78\text{s}$, 60% extraction; non-linear myocardial uptake
 - $^{13}\text{N-NH}_4^+$; cyclotron
 - $t_{1/2} = 9.8\text{ min}$, 80% extraction
 - Relatively long biologic half-life ($^{13}\text{N-glutamine}$)
 - Excellent for MPI
 - $^{18}\text{F-FDG}$; cyclotron
 - $t_{1/2} = 110\text{ min}$
 - Myocardial viability
 - $^{15}\text{O-H}_2\text{O}$; cyclotron
 - $t_{1/2} = 2.4\text{ min}$; short biological half-life, poor count density

Myocardial Ischemia in CHD

- CHD survivors with atherosclerosis
- Coronary reimplantation
 - TGA, ALCAPA, AV disease, Aortic root aneurysms
- Systemic RV’s
 - Hypoplastic left heart
 - Corrected TGA
- Syndromic patients
 - Williams Syndrome: coronary artery narrowing
 - Other vasculopathies
Fixed and Reversible Defects

42 yo former Tetralogy of Fallot patient, s/p RV/PA conduit, presenting with typical angina: 13N-NH$_3$ PET

Partington et al. J Nuc Cardiol (2016) 23: 45-63
Fixed and Reversible Defects

20 yo TGA, s/p ASO with chest pain: 82Rb PET, showing apical and anterolateral reversible defects

Partington et al. J Nuc Cardiol (2016) 23: 45-63
Myocardial Flow Reserve

- Time activity curve fitting
- 2 compartment model
- Estimates of MBF in ml/g/min
- MFR = Stress MBF / Rest MBF

List mode or Multi-frame/Dynamic Acquisition: 82Rb or 13NH$_4^+$

Myocardial Flow Reserve

List mode or Multi-frame/Dynamic Acquisition: ^{82}Rb or $^{13}\text{NH}_4^+$

13NH$_4^+$ PET/CT in diabetic patient with hypertension and risk of ischemic heart disease: LAD

Myocardial Flow Reserve

Patients with Normal Regional Perfusion

- Associated with worse outcome in CAD
 - A non-specific variable
- In CHD, being studied:
 - TGA
 - Variable reductions in MFR depending on repair
 - ALCAPA
 - Reductions in LCA territory MFR vs RCA
 - Fontan
 - Reduced MFR in systemic RV
 - Cyanotic Heart Disease

5-yo D-TGA, VSD and PS, s/p attempted Rastelli with ligation of the LAD; subsequent BTS and BDG. Assess myocardial perfusion and LV viability

\[^{13}\text{N-NH}_4^+ \text{ PET/CT with Adenosine stress} \]
\(^{18} \text{F-FDG} \) and endocarditis

- **Prosthetic valves, stents & conduits**
 - Predisposed to infection
 - Difficult to evaluate by MRI, CT or echo
 - High sensitivity but potential for false +
 - Dietary prep with ketogenic (high fat/low carb) diet
 - Shifting myocardium to FA metabolism
 - Reduce background

10 mo later, after Abx Rx
Radionuclide Imaging in Epilepsy

- Pre-surgical epilepsy evaluation
- Opportunity for shortening the imaging & sedation
- Role for non-FDG PET tracers
54 children with refractory epilepsy

- EEG, MRI, FDG-PET, Ictal/Interictal SPECT, SISCOM
- Concordance with clinical epileptogenic zone:
 - MRI: 21/54 (39%)
 - SISCOM: 36/54 (67%)
 - \(^{18}\)F-FDG PET: 31/54 (57%)
 - FDG PET + SISCOM: 41/54 (76%)
 - In 2/3 of MRI failures either PET or SISCOM localized

- SISCOM and \(^{18}\)F-FDG PET: complementary pre-op data matching EEG/clinical data in \(\frac{3}{4}\) of patients

- *Note challenge of obtaining interictal and ictal SPECT*

MRI, PET and Epilepsy

- Greater severity of pre-op hypometabolism correlated with better post-op seizure control
- Ipsilateral temporal lobe hypometabolism 86% predictive of good post-op outcome
- Functional deficit zone: Brain region with abnormal function during interictal period
 - Extratemporal hypometabolism in TLE has worse outcome
- Need for additional tracers
Tracers for Targeted Epilepsy PET Imaging

- 11C flumazenil (FMZ)
 - GABA antagonist
 - More sensitive and accurate than FDG-PET
- 11C-carfentanil (CFN)
 - Opioid receptor (delta) agonist
- 18F-MPPF
 - Serotonin 5-HT1A antagonist
- 11C-alpha-methyl-L-Tryptophan (AMT)
 - Increased uptake in TSC and in some FCD pts
Reduced 18F-FMZ uptake in right temporal lobe in MTS, more precisely localizing epileptogenic focus than FDG.

11C-AMT uptake localizing the epileptogenic left parietal tuber.

Kumar & Chugani. JNMT (2017) 45: 22
Integrating PET and MRI

Complex MRI, DTI, MEG and EEG analysis characterizing epileptogenic tubers in TSC patient

18F-NaF PET, MRI and non-Accidental Trauma

MRI:
- Soft tissues
- Brain
- 18F-NaF Bone PET
- Occult lesions
- Distribution
wb MRI in Suspected Infant Abuse

- **167 fractures**
 - 27% both SS and MRI
 - 41% by wbMRI
 - 32% by skeletal survey
- **wbMRI: low sensitivity for detecting CML (31%)**
- **wbMRI: low sensitivity for muscle injury near rib fx**
- **Conclusion:**
 - Insensitive for detecting high specificity lesions

\(^{18}\)F-NaF PET & Skeletal Trauma in Child Abuse

- 22 pts, 114 bone locations with fracture
- \(^{18}\)F-PET sensitivity vs skeletal survey
 - 18\% higher for all fractures
 - 35\% higher for thoracic fractures
 - 27\% higher for posterior rib fractures
 - 18\% lower for CML’s
 - Similar specificity, expect posterior rib fractures, where skeletal survey was 99\% specific vs 93\%

18F-NaF PET & Skeletal Trauma in Child Abuse

18F-NaF PET showing additional lesions in thorax and spine in 2 patients with multiple fractures

Tau PET imaging in Traumatic Brain Injury

- Severity based on clinical Symptoms
- MRI
 - fMRI, DTI, DWI
 - FA, RD, AD
- 18F-Flubetapir
 - amyloid plaques
- 18F-SV-1451
 - tau protein aggregates
- TBI associated with increased tau deposition

Saint-Aubert et al. Mol Neurodeg (2017)

18F-SV-1451 PET in Human TBI

Wooten et al. JNM (2017) 58: 484

Courtesy of N. Kwatra, MD
• Reviewed non–oncologic applications of PET/MRI

• To review both FDG and non-FDG PET tracers and the potential for use in PET/MRI
 – 18F-Na
 – 13N-NH$_4^+$, 82Rb
 – 11C-alpha-methyl-L-Tryptophan (AMT)
 – 18F-SV-1451 for tau imaging

• To appreciate the potential role of PET/MRI in diagnosis and management of non-oncologic diseases