Doppler Imaging: The Basics

Brian D. Coley, MD, FACR
Cincinnati Children’s Hospital Medical Center
Cincinnati, Ohio
brian.coley@cchmc.org

facebook.com/CincyKidsRad
@CincyKidsRad @bdcoleymd
Doppler Equation

- $F_D = 2F_0 \mathbf{v} \cos \theta / c$
- F_D = Doppler shift (measured)
- F_0 = insonating frequency (known)
- θ = angle of insonation (measured)
- c = speed of sound (1540 m/sec)
\[F_D = 2F_0 v \cos \theta / c \]
\[F_D = 2F_0 \, v \cos \theta / c \]
Hemodynamics

- Flow in most vessels laminar
- Blood viscous - shear stress
- Parabolic velocity profile
 - Near zero at edge (boundary layer)
 - Mean velocity $\approx 1/2$ max velocity
Parabolic Laminar Flow
Parabolic Laminar Flow

Narrow gate

Wide gate
Bernoulli’s Principle

• Flow is constant
• $Q = \text{Velocity} \times \text{Area}$

Daniel Bernoulli
1700 - 1782
Poiseuille’s Law

\[Q = \Delta P \left(\pi \frac{r^4}{8l\eta} \right) \]

Flow \approx \text{Pressure}

\(\Delta P = \) pressure change
\(r = \) vessel radius
\(l = \) vessel length
\(\eta = \) fluid viscosity

Assumes steady flow, rigid tube

Jean Louis Marie Poiseuille
1799 - 1869
Hemodynamics - *in vivo*

- Blood flow - difference in fluid energy
 - Pressure
 - Kinetic
 - Potential (gravity)
 - Inertial (pulsatile systems)
 - Viscous (usually neg)

- Energy is conserved

Isaac Newton
1643 - 1727
Flow constant
To maintain flow:
↑ velocity, ↓ pressure
Laminar flow maintained

Adapted From: Taylor, Burns, and Wells.
Clinical Applications of Doppler Ultrasound
Reality

Energy lost through stenosis

Shape, length, η

Inertial losses

Viscous losses

Downstream pressure may be maintained

Adapted From: Taylor, Burns, and Wells. Clinical Applications of Doppler Ultrasound
Reynolds Number

\[R = \frac{d \cdot v \cdot \rho}{\eta} \]

- \(d \) = vessel diameter
- \(v \) = velocity
- \(\rho \) = fluid mass density
- \(\eta \) = fluid viscosity

For blood \(R = 2300 \)

Adapted From: Taylor, Burns, and Wells. Clinical Applications of Doppler Ultrasound
Reynolds Number

LAMINAR FLOW

TURBULENT FLOW

\[R = \frac{d \cdot v \cdot \rho}{\eta} \]

- \(d \) = vessel diameter
- \(v \) = velocity
- \(\rho \) = fluid mass density
- \(\eta \) = fluid viscosity

For blood \(R = 2300 \)

Osborne Reynolds
1842 - 1912

Adapted From: Taylor, Burns, and Wells. Clinical Applications of Doppler Ultrasound
Critical Stenosis

Stenosis narrows, velocity ↑
As velocity ↑, Reynolds number ↑
Laminar flow lost to turbulence
Energy losses ↑↑
Perfusion is impaired

Elevated velocities infer energy loss
Downstream perfusion impaired
“Significant” or “Critical” stenosis

Adapted From: Taylor, Burns, and Wells.
Clinical Applications of Doppler Ultrasound
Waveform

Velocity vs. Time

Local conditions

Proximal / upstream conditions
 Stenoses, cardiac output, shunts

Distal / downstream conditions
 Impedance (pressure, vessel diameter, etc)
Peak Systolic Velocity

Increased
 - Larger volume flow
 - Stenosis (length, impedance)

Decreased
 - Low volume flow
 - Critical stenosis

SMA fasting

SMA post-prandial
Liver - Portal Vein

Fasting

Post-prandial
End Diastolic Velocity

Increased

Low impedance (vasodilatation)
Downstream from stenosis

Decreased

High impedance (vasoconstriction)
Acceleration Time

Normally very short (< 0.07 s)

Delayed

Stenosis

High compliance

Low resistance (AVF)

High downstream area
Hemodynamics - Veins

Isolated from arterial pulsation
Slower flow
Turbulence uncommon ($R \approx \text{velocity}$)
Sensitive to downstream pressures
Always Remember

Medications

Shunts

Cardiac disease
Hepatic Artery - Pressors

Epi

No Epi
Cardiac Disease

Aortic Coarctation

PDA
Abnormal hepatic waveforms...
Tricuspid atresia with intact septum and elevated right heart pressures
The Quick Review

Poiseuille
Flow ≈ Pressure

Bernoullie
Constant volume flow through stenosis

Reynolds
Turbulence ≈ velocity
The Quick Review

PSV – volume flow and stenoses

EDV – impedance

AT – stenoses and impedance
Conclusions

Properties of blood flow

Conservation of flow and energy
Laminar vs. turbulent flow
Behavior with stenoses, impedance

Doppler waveform - velocity vs. time
PSV, EDV, AT
Conclusions

Doppler is good

And it’s not that hard

Predictable blood flow alterations allow application to clinical scenarios

Makes US more fun and rewarding