CLINICAL IMAGING OF THE PEDIATRIC UPPER AIRWAY

Robert Fleck, MD
Sally Shott, MD
Stacey Ishman, MD
Raouf Amin, MD
Goutham Mylavvarapu, PhD
Alister Bates, PhD
Ephraim Gutmark, PhD
Lane Donnelly, MD
Disclosure Slide

• No disclosures
Presentation

• Why do we image children with obstructive sleep apnea?
• What are some of the findings on MRI?
• How do you start a program?
• Understanding surgical options/outcomes?
Obstructive Sleep Apnea (OSA)

• Common – 3% of children
• Problematic – associated with
 – Daytime sleepiness
 – Hyperactivity
 – Attention Deficit Disorder
 – Learning problems
 – Failure to thrive
• Straight forward treatment
Obstructive Sleep Apnea

• Straight forward
 – Healthy, normal children
 – Diagnosis by physical examination and lateral radiograph
 – Enlarged adenoids and palatine tonsils

• More Severe
 – Down syndrome
 – Craniofacial anomalies
 – Obesity
 – Asthma
Persistent OSA in children

- Mitchell 2007: 10-20% incidence of persistent sleep apnea in a group of 79 typical children after T&A
- Tauman et al. 2006: complete normalization of all components evaluated in a sleep study in only 25% of their test population of ‘typical’ children
- Bhattacharjee et al 2010: 6 center study of 578 ‘typical’ children undergoing T&A 73% had mild or greater OSA post surgery; 22% moderate OSA. Risk factors were obesity, age greater than 7 yo, severity of OI pre-op, and asthma in non-obese
Obstructive Sleep Apnea

• Subgroup of more severe OSA
 – Failed prior surgery (T&A)
 – Down syndrome
 – Craniofacial anomalies
 – Obesity
 – Polycystic ovarian syndrome (PCOS)
 – Turner syndrome
Down Syndrome

• Higher probability of developing OSA
• Even if asymptomatic
• Higher risk due to:
 – Midface hypoplasia
 – Narrow nasopharynx
 – Large tongue
 – Muscular hypotonia
 – Increased URI’s
 – Small larynx and trachea
Causes for Persistent OSA

• Enlarged lingual tonsils
Lingual Tonsillectomy for Treatment of Pediatric Obstructive Sleep Apnea
A Meta-analysis

- 4 studies, 73 patients
- AHI < 1 events/hour success 17%
- AHI < 5 events/hour, success 51%
- Mean reduction was 8.9 events/hour
Causes for Persistent OSA

- Enlarged lingual tonsils
- Enlarged recurrent adenoids
Causes for Persistent OSA

- Image motion
 - Sagittal Cine
 - Axial Cine
- Definite advantage
- Hypopharyngeal Collapse
Causes for Persistent OSA

Glossoptosis

• Posterior displacement of tongue into the pharynx
 – Passive falling posterior
 – Mass effect due to macroglossia or relative macroglossia
 – Dynamic form of collapse with piston like movement
Causes for Persistent OSA

• Laryngomalacia
 – Newly recognized on MR
 – Confirmed by DISE
 – Usually not present this late in life!
Causes for Persistent OSA

- Epic Laryngomalacia

Airway

Arytenoids

“Epic Laryngomalacia”
How to start a program?

• Is there a need?
 – Usually driven by an otolaryngologist
 – Less driven by pulmonology

• Need an anesthesiologist

• Radiologist and technologist

• MRI scanner – No special bells or whistles
Sedation and Preparation of Patient

- Patient is induced with sevoflurane in the induction room
- IV is started
- Sedation initiated with a bolus dose of dexmedetomidine (1 mcg/kg)
- Continuous infusion of dexmedetomidine (1 mcg/kg/h)
- Transferred to the MRI head is positioned at Frankfort angle of ~90 degrees – angle created by a line parallel to the Z-axis and inferior orbit to external auditory canal
Maintenance of Airway

These patients are all critical airway patients for anesthesia.

Often an oral airway is placed during induction:
 - Should be removed before imaging.
 - Head strap should be positioned so that a mask can be used for CPAP if required to maintain airway.

Order of preference for maintaining airway:
 - Mask with CPAP
 - Nasal Trumpet
 - Never desirable – Oral airway, LMA (Sometimes information can be gained from anatomic imaging but airway needs to be removed for Cine images.)
Possible alternative: Ketamine and Dexmedetomidine for MRI Sleep Studies

• Sedation initiated with a bolus dose of ketamine (1 mg/kg) and dexmedetomidine (1 mcg/kg)

• Continuous infusion of dexmedetomidine (1 mcg/kg/h)

Luscri et al. Pediatric Anesthesia 2006 16: 782–786
Ketamine and Dexmedetomidine for MRI Sleep Studies

Dexmedetomidine prevents:
- Tachycardia
- Hypertension
- Salivation
- Emergence phenomena

Ketamine prevents:
- Bradycardia
- Hypotension
Requirement for Artificial Airway by Severity of OSA as Documented by Polysomnography

<table>
<thead>
<tr>
<th>OSA Severity</th>
<th>Dexmedetomidine</th>
<th>Propofol</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mild</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Obstructive Index (events/hour)</td>
<td>2.7 ± 1.9</td>
<td>3.1 ± 1.3</td>
<td>0.53†</td>
</tr>
<tr>
<td>Respiratory Disturbance Index (events/hour)</td>
<td>3.6 ± 1.9</td>
<td>4.4 ± 1.7</td>
<td>0.30‡</td>
</tr>
<tr>
<td>Needed Artificial Airway, N (%)</td>
<td>2 (13)</td>
<td>1 (13)</td>
<td>1†</td>
</tr>
<tr>
<td>Moderate</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Obstructive Index (events/hour)</td>
<td>10.2 ± 5.8</td>
<td>8.8 ± 3.8</td>
<td>0.54†</td>
</tr>
<tr>
<td>Respiratory Disturbance Index (events/hour)</td>
<td>11.0 ± 5.8</td>
<td>10.9 ± 4.3</td>
<td>0.96‡</td>
</tr>
<tr>
<td>Needed Artificial Airway, N (%)</td>
<td>2 (18)</td>
<td>3 (33)</td>
<td>0.62‡</td>
</tr>
<tr>
<td>Severe</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Obstructive Index (events/hour)</td>
<td>21.8 ± 11.3</td>
<td>23.6 ± 13.5</td>
<td>0.74†</td>
</tr>
<tr>
<td>Respiratory Disturbance Index (events/hour)</td>
<td>23.8 ± 11.2</td>
<td>24.9 ± 13.1</td>
<td>0.83†</td>
</tr>
<tr>
<td>Needed Artificial Airway, N (%)</td>
<td>1 (7)</td>
<td>5 (56)</td>
<td>0.02‡</td>
</tr>
</tbody>
</table>
Clinical Protocol

- Head and neck vascular or cervical spine coil
- Localizers
- Sag PD CUBE no fat sat – VISTA on Philips, SPACE on Siemens; Respiratory Triggered
- Sag Cine Airway - Midline
- Axial Cine Airway – Retroglossal and nasopharynx
- Axial T2 Fat Sat Multivane
- Sag STIR or T2 Fat Sat Multivane
- Stack of Axial Cine of airway from choana through the glottis
Isotropic Resolution of ~0.5mm allows reformats in any plane
Retroglossal Airway

Nasopharyngeal Airway

Retroglossal Airway
Sagittal Midline Cine

Retroglossal Airway

Nasopharyngeal Airway
SSFP or GRE Cine Airway Image 128 X 128 pixels, FOV 240 mm, Slice Thickness 5mm, TR 3.239, TE 1.128, Flip angle 65

Best Temporal Resolution ~200 ms

15 images per respiratory cycle

Minimizes blurring
No under sampling
Recap of Clinical Protocol

- Head and neck vascular or cervical spine coil
- Localizers
- Sag PD CUBE no fat sat – VISTA on Philips, Respiratory Triggered
- Sag Cine Airway - Midline
- Axial Cine Airway – Retroglossal and nasopharynx
- Axial T2 Fat Sat Multivane
- Sag T2 Fat Sat Multivane or STIR
Practical Issues

- Position as close to natural sleeping position as possible
- May need to augment airway
 - Image every sequence
 - Remove repeat axial and sag cine
- Anesthesia was uncomfortable at first
 - Patients obstruct and desaturate during sleep
Causes of persistent obstructive sleep apnea despite previous T&A in children with Down syndrome as depicted on static and dynamic cine MRI
Donnelly, Shott, LaRose, Chini, Amin. Am J Roentgenol 2004

27 patients – Mean age 9.9 years
- Macroglossia - 74%
- Glossoptosis - 63%
- Recurrent adenoids - 63%
- Enlarged lingual tonsils - 30%
- Hypopharyngeal collapse - 22%
Advantage of Imaging

- Image motion
 - Sagittal Cine
 - Axial Cine
 - Effect of CPAP

12 cm CPAP 0 cm CPAP
Advantage of Imaging

- Image motion
 - Sagittal Cine
 - Axial Cine
 - Effect of CPAP

12 cm CPAP

0 cm CPAP
Advantage of Imaging
Other Findings

• Thornwaldt cyst
Other Findings

- Vallecular cyst
Other Findings

Atlantoaxial subluxation impinging on the spinal cord
UNUSUAL CASES
Surgical Option

• Depends on level(s) of residual obstruction
 – Base of tongue collapse
 – Oropharyngeal collapse
 – Nasopharyngeal collapse
 – Hypopharyngeal collapse
Surgical Options

Lingual Tonsillectomy

Redo Adenoidectomy
Surgical Options

• Down Syndrome
 – Relative macroglossia
 – Glossoptosis
Surgical Options
Wedge Resection Base of Tongue
Surgical Options

• Genioglossus Advancement
 – Suture is tied down so that indentation and retraction of posterior tongue can be palpated transorally
Surgical Options

• 31 patients, 19 with Down syndrome
• Polysomnography (PSG) 2-24 months after surgery, average = 5.6 months
• PSG success if AHI<5 events per hour, Oxygen saturation >90%, sleep duration with end-tidal CO$_2$ exceeding 50 mmHg<10%
• 58% success in DS patients
<table>
<thead>
<tr>
<th>Department of Pulmonary Medicine, Cincinnati Children’s Hospital Medical Center</th>
<th>Department of Otolaryngology-Head and Neck Surgery, University of Cincinnati - Medical Center</th>
</tr>
</thead>
<tbody>
<tr>
<td>Raouf Amin, MD</td>
<td>Sid Khosla, MD</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Department of Radiology, Cincinnati Children’s Hospital Medical Center</th>
</tr>
</thead>
<tbody>
<tr>
<td>Robert Fleck, MD</td>
</tr>
<tr>
<td>Lane Donnelly, MD</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Department of Otolaryngology-Head and Neck Surgery, University of Cincinnati - Medical Center/Cincinnati Children’s Hospital - Medical Center</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sally Shott, MD</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Gas Dynamics and Propulsion Laboratory, Department of Aerospace Engineering and Engineering Mechanics, University of Cincinnati</th>
<th>Department of Otolaryngology-Head and Neck Surgery, University of Cincinnati - Medical Center</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ephraim Gutmark, PhD</td>
<td></td>
</tr>
<tr>
<td>Mihai Mihaescu, PhD</td>
<td></td>
</tr>
<tr>
<td>Goutham Mylavarapu, PhD</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Department of Anesthesia</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mohamed Mahmoud, MD</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Department of Bioengineer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Keith McConell, MS</td>
</tr>
<tr>
<td>Serai, Suraj, PhD</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Department of Bistatistics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sheila Slaisbury, PhD</td>
</tr>
<tr>
<td>Mathew Fenchel, MS</td>
</tr>
</tbody>
</table>

| Kathleen VanDeGrift, RC |
| Jenny Jeffries, RRN |

NIH 5 RO1HL105206-0