MRI of the airways and lungs
Including hyperpolarized techniques

Jason C. Woods

Pulmonary Medicine
Radiology
Neonatology

Center for Pulmonary Imaging Research
Disclosure statements:

Financial relationships: Dr. Woods is a consultant to and has received research support from Vertex Pharmaceuticals, Inc. and Grifols, Inc.

Neither financial relationship relates directly to the work discussed.
Lung is most challenging solid organ to image

1. Large and moves with respiration (motion artifacts)
2. Low density ($\rho = 0.2$ g/cm3 at TLC)
3. Multiple air-tissue interfaces (alveoli) cause fast MRI decay of signal

Techniques we use

X-ray (not tomographic)

X-ray CT (fairly high ionizing radiation)

A few other techniques like ultrasound (streaky results)

MRI (no radiation, but historically bad for parenchyma)

(now pretty good!)
Challenges led to new innovation for in-vivo imaging

1. UTE and FT MRI sequences (short echo time)
 Mostly structural imaging (& self gating)
 Some functional techniques
 Oxygen enhanced & multi-volume matching

2. Neonatal MRI
 1.5T ONI / GE hybrid
 (Cincinnati Children’s for 5 yrs, now at Sheffield)

3. Hyperpolarized-gas MRI (3He or 129Xe)
 Realtime ventilation (breath hold for 10-15 s)
 Measure of alveolar-airspace size
 Measures of gas exchange

Healthy: $\text{FEV}_1 = 98%$
Cystic Fibrosis: $\text{FEV}_1 = 102%$
Complementary Techniques: UTE and HP-gas MRI

CF is a “model” lung disease, since structure+function abnormalities

Structure via UTE MRI
Lung parenchymal signal decays quickly with time
Radial k-space techniques allow short echo time

Lung parenchymal signal

Function (ventilation): 129Xe MRI
Gas with strong magnetic signal
Score both MRI and CT via Brody Score

Lung Abnormalities
- Bronchiectasis (BR)
- Ground glass opacity (GGO)
- Bronchial wall thickening (BWT)
- Mucus Plugging (MP)
- Consolidation (Con)
- Air trapping (AT)

CF: UTE MRI comparison to CT: 1-3 yr olds

![Image showing UTE MRI and CT comparisons with various lung abnormalities highlighted.](image)

- Equation: \(y = 0.47x + 0.87 \)
- \(R^2 = 0.81 \)
Hyperpolarized 129Xe MRI

Subject in MRI Scanner

Axial Slices Acquired

Inhaled 129Xe

Control, 6 y.o. female
FEV$_1$ = 95%, VDP = 1.8%

Cystic Fibrosis, 15 y.o. female
FEV$_1$ = 72%, VDP = 32.2%

Cystic Fibrosis, 11 y.o. male
FEV$_1$ = 102%, VDP = 27.5%

129Xe MRI in a control subject, and in a patient with CF

14 y.o. male control subject, $FEV_1 = 103\%$ (normal lung function)

All control subjects: uniform 129Xe ventilation and low 129Xe ventilation defect percentage (VDP)

15 y.o. female CF subject, $FEV_1 = 73\%$
129Xe Ventilation Defect Percentage (VDP) in CF

129Xe ventilation MRI is a very sensitive technique for measuring airway obstruction.

Control
- FEV$_1$ = 115%

CF
- FEV$_1$ = 81%
- FEV$_1$ = 102%

N = 10
N = 11

Ages 6-16

Together get function, structure, and microstructure

Quantify by lobe, segment, or region
Self-gating proton MRI: motion correction and respiration gating

Neonatal Respiratory Cycle via Initial FID Phase
(data binned into 25% quartiles)

Period of quiescence

Period of bulk motion

Quiescence resumed

Tidal expiration

Tidal inspiration

High-resolution pulmonary MRI in neonates is feasible (no sedation, free breathing or normal resp support)

After new sequences and 2-yr optimization:
High-resolution images, high signal

Lung parenchymal signal

MRI signal

time after rf pulse (ms)

NICU control patient – no lung abnormalities

Use to quantify density, like CT?

5 Neonates (~ 40 wks PMA), clinical CT + research MRI

- BPD (Bronchopulmonary Dysplasia)
- Pulmonary Intersitial Glycogenosis
- Poland Syndrome

CT

UTE MRI

BPD, $R^2 = 0.81$

PIG, $R^2 = 0.79$

PoS, $R^2 = 0.23$

PIG, $R^2 = 0.82$

TEF*, $R^2 = 0.73$

Now we can, with MRI gating and motion correction:

1. Calculation of parenchymal densities and opacities, left & right-lung tidal volumes
2. Visualization of ventilation via ciné loops (from binned reconstructions)
3. Visualization and measurement of airway-walls (structure, malacia)
4. Measure ventilation and gas exchange via 129Xe MRI
Does pulmonary imaging matter?

1. Does imaging relate to
 a. disease severity?
 b. interventional efficacy?
2. Can we meaningfully phenotype?
3. Does imaging or image-phenotyping help predict outcomes?
4. Do we get unexpected new knowledge?
Parenchymal score stratifies clinical BPD severity

Clinical severity?

<table>
<thead>
<tr>
<th>BPD severity (NICHD/NHLBI)</th>
<th>Cohort size N=41 total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Term control</td>
<td>N = 5</td>
</tr>
<tr>
<td>Preterm control</td>
<td>N = 4</td>
</tr>
<tr>
<td>Mild BPD</td>
<td>N = 7</td>
</tr>
<tr>
<td>Moderate BPD</td>
<td>N = 6</td>
</tr>
<tr>
<td>Severe BPD</td>
<td>N = 20 (2 are deceased)</td>
</tr>
</tbody>
</table>

![Box plot showing BPD MRI scores for different BPD severity levels]
Conclusions

Pulmonary MRI is feasible, practical (even in NICU)

• In BPD we can quantify prematurity-associated pulmonary abnormalities
• Predictive of severity and outcomes

New UTE methods with self-gating

• Resolution approaching CT (0.7mm), signal ~ density
• Removal of bulk motion
• Respiratory gating, regional physiology

Hyperpolarized gas MRI

• Very sensitive measure of early lung obstruction
• Quantification of airspace size possible even in neonates