Synovial Diseases in Children

A. Carl Merrow, MD
Corning Benton Chair for Radiology Education
Department of Radiology
Cincinnati Children’s Hospital Medical Center
Disclosures

• Pediatrics Lead Author for Amirsys-Elsevier
 – Royalties/Fees

• Lecture heavily weighted for MRI
Overview

• Anatomy
• Imaging: Techniques and value
• Specific diseases
 – Etiology
 – Distribution of joints
 – Acute & chronic manifestations
 – Useful imaging clues
Anatomy: Types of Joints

- Synarthroses (immovable)
- Amphiarthrosis (slightly movable)
- Diarthrosis (freely movable)
Anatomy: Diarthrodial Joints

- Cartilage
- Capsule
 - Ligaments
 - Fibrous tissue
- Synovium
 - Lines capsule, not cartilage
 - Invests intra-articular ligaments & tendons
Anatomy: Synovium

- Two layers
 - Intima
 - Synovial lining cells (synovioocytes, SLCs)
 - Discontinuous layer 1-3 cells thick
 - Incomplete basement membrane
 - Subintima
 - Loose connective tissue
 - Merges with fibrous capsule
Anatomy: Synovium

• Purposes
 – Fluid formation
 – Nutrition of cartilage
 – Movement
Synovium also found...

- Bursae
- Tendon sheaths
- Synovial cysts
- *NOT* synovial sarcoma
Joint pathophysiology

- Variety of processes may incite synovitis
- Single vs. recurrent event
 → destructive cycle
- Long term effects
 - Bone
 - Articular cartilage
 - Growing epiphysis
Imaging: Why?

- Establish diagnosis
- Localize/define extent of involvement
 - Within single joint
 - Tendon sheath/bursa
 - Additional unsuspected joints
- Pick up complications early
- Optimize management
General imaging: Radiographs

- **Pros**
 - Baseline
 - Exclude other etiologies
 - Cheap, quick

- **Cons**
 - No early cartilage damage
 - No synovial detail
General imaging: Radiographs

• Secondary findings
 – Synovial hypertrophy
 • Effusion/synovial complex
 • Osteoporosis
 • Epiphyseal changes
 – Osteocartilaginous damage
 • Joint space loss
 • Erosions
 • Ankylosis
General imaging: Ultrasound

• Pros
 – No radiation/sedation
 – Readily available
 – Easy contralateral comparison
 – Great for effusions, synovitis
 – May demonstrate osteocartilaginous changes

• Cons
 – Operator dependent
 – Limited window
General imaging: MRI

• Pros
 – Most sensitive, specific method for all tissues
 – Entire joint
 – Early changes (even asymptomatic)
 – Quantitative assessments

• Cons
 – Sedation (age dependent)
 – IV contrast
 – Comparison not readily available without planning
 – Time intensive
 – Scheduling
 – Cost
Specific Diseases
Differential:
Intra-articular “loose” bodies

- Tiny, numerous, no Ca^{2+}
 - Rice bodies/necrotic synovium
 - JIA
 - Granulomatous diseases
 - Other?
 - Chondromatosis

- Larger, single, +/- Ca^{2+}
 - Osteochondral fragment
 - OCD
 - Acute trauma
 - Retained foreign body
Differential: Intra-articular “loose” bodies

- Tiny, numerous, no Ca^{2+}
 - Rice bodies/necrotic synovium
 - JIA
 - Granulomatous diseases
 - Other?
 - Chondromatosis

- Larger, single, +/- Ca^{2+}
 - Osteochondral fragment
 - OCD
 - Acute trauma
 - Retained foreign body

Is it really loose vs. attached?
Juvenile Idiopathic Arthritis

- Most common chronic pediatric arthropathy

- 16-150/100,000 children worldwide

- Most common 1-3YO, less 8-10YO
Juvenile Idiopathic Arthritis

- Arthritis of unknown etiology
 - Onset prior to 16YO
 - Lasts at least 6 weeks
- 9-83% persistent disease into adulthood
- Mortality < 0.3%
JIA: ILAR Classification

- Systemic arthritis (10-20%)
- Oligoarthritis (50-60%)
- Polyarthritis (Rh factor negative) (>30-35%)
- Polyarthritis (Rh factor positive)
- Psoriatic arthritis (<15%)
- Enthesis-related arthritis (<7%)
- Undifferentiated arthritis
Differential:
Distorted epiphyses

- Synovitis
- Prior infection
- Syndromic
- Gorham disease
- AVN
JIA
JIA: Imaging

- Radiographs
 - Periarticular soft tissue swelling, effusion
 - Periarticular osteoporosis
 - Accelerated maturation of secondary ossification centers
 - Periosteal reaction
 - Joint space loss, erosions
 - Subluxation, dislocation (ligamentous laxity)
 - Ankylosis (wrist, c-spine), degeneration
JIA: Imaging

• Radiographs—Specific joints
 – Knee: Widened intercondylar notch, flat patella
 – Phalanges: Boutonniere, Swan Neck, flexion
 – Hip: Protrusio acetabuli, osteonecrosis
 – Spine: Atlanto-axial instability, fusion of posterior elements, hypoplastic vertebral bodies
JIA: Imaging

- **MRI**
 - Fat pad edema
 - Prominent lymph nodes
 - Effusion, synovial thickening
 - Cartilage wear, bony edema, erosions
 - Enthesitis
 - Tenosynovitis, tendon rupture
 - Synovial cyst (popliteal or “Baker’s” cyst)
- **Specific joints:**
 - Knee: Hypoplastic menisci, cruciate ligament atrophy
Grading System of Knee: JAMRIS

- Synovial hypertrophy
- Bone marrow changes
- Cartilage lesions
- Bone erosions
Juvenile Arthritis MRI Scoring (JAMRIS) system for the knee

<table>
<thead>
<tr>
<th>Synovial hypertrophy score (maximal synovial thickness)</th>
<th>Location</th>
<th>0-2mm</th>
<th>≥2-4mm</th>
<th>>4mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patellofemoral</td>
<td></td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>Suprapatellar recesses</td>
<td></td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>Infrapatellar fat pad</td>
<td></td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>Cruciate ligaments</td>
<td></td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>Medial posterior condyle</td>
<td></td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>Lateral posterior condyle</td>
<td></td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bone marrow change score (involvement of bone volume)</th>
<th>Location</th>
<th>None</th>
<th><10%</th>
<th>10-25%</th>
<th>>25%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patella, medial</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
<td></td>
</tr>
<tr>
<td>Patella, lateral</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
<td></td>
</tr>
<tr>
<td>Femur, medial condyle</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
<td></td>
</tr>
<tr>
<td>Femur, lateral condyle</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
<td></td>
</tr>
<tr>
<td>Femur, medial weight-bearing region</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
<td></td>
</tr>
<tr>
<td>Femur, lateral weight-bearing region</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
<td></td>
</tr>
<tr>
<td>Tibia, medial tibia plateau</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
<td></td>
</tr>
<tr>
<td>Tibia, lateral tibia plateau</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cartilage lesion score (involvement of cartilage surface area)</th>
<th>Location</th>
<th>None</th>
<th><10%</th>
<th>10-25%</th>
<th>>25%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patella, medial</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
<td></td>
</tr>
<tr>
<td>Patella, lateral</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
<td></td>
</tr>
<tr>
<td>Femur, medial condyle</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
<td></td>
</tr>
<tr>
<td>Femur, lateral condyle</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
<td></td>
</tr>
<tr>
<td>Femur, medial weight-bearing region</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
<td></td>
</tr>
<tr>
<td>Femur, lateral weight-bearing region</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
<td></td>
</tr>
<tr>
<td>Tibia, medial tibia plateau</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
<td></td>
</tr>
<tr>
<td>Tibia, lateral tibia plateau</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bone erosion score (involvement of bone volume)</th>
<th>Location</th>
<th>None</th>
<th><10%</th>
<th>10-25%</th>
<th>>25%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patella, medial</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
<td></td>
</tr>
<tr>
<td>Patella, lateral</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
<td></td>
</tr>
<tr>
<td>Femur, medial condyle</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
<td></td>
</tr>
<tr>
<td>Femur, lateral condyle</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
<td></td>
</tr>
<tr>
<td>Femur, medial weight-bearing region</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
<td></td>
</tr>
<tr>
<td>Femur, lateral weight-bearing region</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
<td></td>
</tr>
<tr>
<td>Tibia, medial tibia plateau</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
<td></td>
</tr>
<tr>
<td>Tibia, lateral tibia plateau</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
<td></td>
</tr>
</tbody>
</table>

OMERACT 11

• Special interest group on MRI in JIA
• Further develop MRI as outcomes marker
• Established goals include
 – Age-based MRI atlas of normal joint development
 – Standard protocols
 – Clinically-validated imaging grading scales
 • Knee, ankle (large)
 • Wrist, hand (small)
 • TMJ
OMERACT 12

• JIA SIG plus Health-e-Child Radiology group
 – Knee and wrist

• Agreements on protocols and scoring
 – Terminology/Definitions
 – Locations
 – Scales
JIA MRI Protocol

- T1 no FS
- T2 with FS
- Pre/post T1 with FS (subtraction)
 - Immediate, dynamic vs. 5/10 minutes
- Others?
 - DWI/ADC
 - 3D imaging
 - GRE or PD (cartilage)
JIA Quantitative Imaging

- MRI
 - Synovial volumes
 - Dynamic enhancement
 - BOLD
 - Cartilage mapping (T2, T1rho, dGEMRIC)

- US
 - Hyperemia
 - Cartilage/bone erosions
JIA TMJ

- Mild enhancement, small amount of fluid may be normal
- Surrounding soft tissue enhancement abnormal
 - Other than normal posterior venous plexus
- Active disease
 - Signal to noise ratios pre/post
 - Dynamic enhancement
 - Condylar edema
Whole Body Screening

- MRI
- PET
Ultrasound Features

- Non-compressible hypoechoic synovium
- Compressible hypo/anechoic effusion
- Hypo/anechoic tissue in tendon sheath
- Hypoechoic, thickened bony insertions of
 - Tendons
 - Ligaments
 - Capsule
- Cartilage thickness
- Bone erosions
- Doppler
JIA Therapies

- NSAIDs
- Steroids (systemic or local injections)
- DMARD
 - Methotrexate, sulfasalazine, leflunomide
- Biologics (monoclonal antibodies, soluble receptors)
 - TNF-α inhibitors
 - IL-1, IL-6
- Stem Cell Transplant
Differential:
Intra-/peri-articular calcifications

- Synovial chondromatosis
- Synovial venous malformation
- Neuropathic joint
- Synovial sarcoma
- Injection granulomas
- Heterotopic ossification
- Osteosarcoma
- Dermatomyositis
- Tumoral calcinosis

Smaller, Intraarticular
Larger, Periarticular
Synovial Chondromatosis

- Benign subsynovial neoplasia
 - Hyaline cartilage nodules
 - May mineralize (60%) and/or become loose

- Usually monoarticular process
 - Knee (50%) > elbow, hip, shoulder
 - Bilateral knee involvement < 10%

- M:F 2:1

- Most common 3rd-5th decades

- Rare malignant transformation
Synovial Chondromatosis: Imaging

- Radiographs:
 - Joint fullness
 - With/without calcified nodules
 - Nodules typically uniform in size
 - May have erosions (esp. tight capsule joints)
 - Late secondary DJD
Synovial Chondromatosis: Imaging

- **MRI:**
 - Appearance depends on nodule content
 - Cartilaginous
 - Intermediate T1/high T2
 - Low signal intensity septa enhances
 - Mixed cartilage/calcification
 - Small foci of low T1/T2 signal within nodules
 - Ossified with fatty marrow:
 - Follows fat signal (high T1, low w/ fat suppression)
Neuropathic joint
Dermatomyositis
Tumoral calcinosis
Tumoral calcinosis
Osteosarcoma
Differential:
Intra-articular hemosiderin

- Hemophilia (or other systemic bleeding disorder)
- Pigmented villonodular synovitis
- Synovial venous malformation
PVNS

• Classification
 – Intra-articular diffuse
 • Knee 80%, hip, ankle, shoulder, elbow
 – Intra-articular localized
 – Extra-articular (GCTTS)

• M=F

• Most commonly 3rd-4th decade

• Benign neoplastic process
PVNS

- Radiographs:
 - Soft tissue mass
 - Late demineralization and joint space loss
 - Erosions
 - Prominent in joints with tight capsule (hip & ankle)
 - Prefer bare areas (rather than subchondral)
 - Periosteal reaction, calcifications <10%
PVNS

• MRI
 – Low signal
 • Secondary to hemosiderin deposition
 • GRE (T2*) accentuates susceptibility
 – May be components of variable T1/T2 signal due to:
 • Mix of hemosiderin/fat/fibrovascular elements
 • Recent hemorrhagic effusion (subacute blood products)
 • Inflamed synovium
PVNS
PVNS (GCTTS)
Differential:
Focal articular/tendon sheath mass

- Clot
- Foreign body granuloma
- PVNS
- Venolymphatic malformation
- Pannus
- Synovial lipoma
- Synovial sarcoma
- Fibroma of tendon sheath
Synovial sarcoma
Differential:
Fat-containing mass

- Synovial lipoma/lipoma arborescens
- Lipoblastoma
- Fibrous hamartoma
- Involuted hemangioma
- Venous malformation
Lipoma Arborescens/Synovial Lipoma

- **Monoarticular**
 - Usually knee, suprapatellar
 - Rarely bilateral

- **Subsynovial tissue replaced by fat cells, inciting synovial proliferation**

- **Metaplasia (not neoplasia)**
Lipoma Arborescens/Synovial Lipoma

- Usually chronic
 - Gradual swelling
 - Painless
 - Recurrent effusions
 - Rarely restricted movement
 - Most common 5th-7th decade
 - Can be secondary to JIA, trauma
Lipoma Arborescens: Imaging

- **Radiographs**
 - Radiolucent foci

- **Ultrasound**
 - Echogenic mass
 - May be frond-like and mobile

- **MRI**
 - Follows fat signal on all sequences
 - Nonfatty portions and synovium may enhance
 - May be accompanied by effusion
 - Chemical shift artifact at fat-fluid interface
Lipoma Arborescens
Case 5
Septic Arthritis

- Often < 10YO
- Knee, hip > elbow, ankle, shoulder
- Sources:
 - Adjacent osteomyelitis
 - Is effusion a septic joint or sterile reactive fluid?
 - Is marrow signal reactive edema vs. osteomyelitis?
 - Hematogenous seeding
 - Direct penetration
Septic Arthritis

- **Joint injury by**
 - Lytic enzymes
 - Increased pressure

- **Imaging**
 - Initially by radiographs, US
 - Correlated with clinical & laboratory parameters (Kocher)
 - Tapped, taken to OR, IV antibiotics
 - MR if no improvement in 48 hours for osteomyelitis

- **Other infections**
 - Granulomatous disease
 - Lyme disease
Septic arthritis
Remote septic arthritis
3 months later...
? Infection

● Toxic Synovitis
 ● Hip (bilateral 25%)
 ● Limp, pain, stiffness
 ● Self-limiting, 3-10 days
 ● 3-10YO

● Imaging
 – Ultrasound cannot distinguish
 – MRI suggests septic joint if periarticular soft tissue or bone marrow signal abnormalities
Toxic synovitis
Hemophilia

• X-linked recessive diseases
 – A: factor VIII deficiency
 – B: factor IX deficiency

• Manifest by spontaneous or traumatic hemorrhage:
 – Intracranial
 – Intra-abdominal, retroperitoneal
 – Musculoskeletal
 • Joints (up to 85% of bleeding episodes)
 • Muscle
 • Bone
 • Fascia
Hemophilic arthropathy

- Synovial bleeding into joint
- Originates at subsynovial vascular plexus
- Chronic deposition of hemosiderin
- Synovial hypertrophy, inflammation, hyperemia
 - Osteoporosis
 - Epiphyseal overgrowth
 - Physeal fusion
Hemophilic arthropathy

- Articular cartilage damaged by:
 - Intra-articular blood products
 - Enzymes breaking down hemosiderin
 - Increased intracapsular pressure

- Subchondral cysts
 - Intraosseous hemorrhage

- Fibrosis
 - Capsular fibrosis, joint contractures
Hemophilic arthropathy: Imaging

• Radiographs
 – General:
 • Increased density effusions
 • Osteoporosis, epiphyseal enlargement, physeal fusion
 • Subchondral cysts
 • Degenerative changes
 • Flexion deformities
Hemophilic arthropathy: Imaging

- Radiographs:
 - Specific joints
 - Knee: Wide intercondylar notch, elongated patella
 - Elbow: Wide trochlear notch and olecranon fossa
 - Ankle: Tibiotalar slanting, flattened talar dome
 - Hip: Protrusio acetabuli, SCFE, coxa valga
Hemophilic arthropathy: Imaging

• MRI:
 – Thickened, low signal synovium on all sequences (most pronounced on T2*)
 – Enhancement post-contrast
Case 7
Synovial Venolymphatic Malformation

- Usually monoarticular
- Knee most common
- Pain, swelling, hemarthrosis
- Focal mass vs. diffuse venous abnormality
 - Malformation may extend through soft tissues to another joint
Synovial Venolymphatic Malformation: Imaging

- **Radiographs:**
 - 50% normal
 - May have phleboliths

- **MRI:**
 - Lobulated mass or serpiginous components
 - High T2 signal
 - Low T1 phleboliths
 - May have fluid-fluid levels
 - May have T2* effect from hemosiderin
 - Variable enhancement
Venolymphatic Malformation
Other causes of synovitis

- Trauma/foreign body
- SCFE
- Infarction
- Tumors
- Leukemia
Foreign body
Chondroblastoma
Summary

- Variety of processes may incite synovitis
- Significant long term effects on intra-articular structures
- Overlapping imaging features
 - Look for specific clues
 - Loose bodies
 - Calcifications
 - Hemorrhage
 - Fat
 - Marrow abnormalities
 - *Always think about septic arthritis!*
Thank you!
References
