Lower Extremity Alignment: Genu Varum / Valgum

Arthur B Meyers, MD
Nemours Children’s Hospital & Health System
Associate Professor of Radiology, University of Central Florida
Clinical Associate Professor of Pediatric Radiology, Florida State University
Disclosures

• Author/editor for Amirsys/Elsevier, receiving royalties
Outline

• Definitions
• Normal knee alignment during development
• Genu Varum
• Genu Valgum
Outline

• Definitions
• Normal knee alignment during development
• Genu Varum
• Genu Valgum
Varus Valgus
Varus

- Distal to angulation –

Valgus

- Distal to angulation –
Varus
- Distal to angulation –
- Apex of angulation –

Valgus
- Distal to angulation –
- Apex of angulation –
Varus
- Distal to angulation –
- Apex of angulation –

Valgus
- Distal to angulation –
- Apex of angulation –

Right

Midline

Left
Varus
- Distal to angulation –
- Apex of angulation –

Valgus
- Distal to angulation –
- Apex of angulation –
Varus
• Distal to angulation – **deviates to midline**
• Apex of angulation –

Valgus
• Distal to angulation –
• Apex of angulation –

Right Midline Left
Varus
- Distal to angulation – deviates to midline
- Apex of angulation – **points from midline**

Valgus
- Distal to angulation –
- Apex of angulation –

![Diagram showing varus and valgus knee alignment](image)
Varus
• Distal to angulation – deviates to midline
• Apex of angulation – points from midline

Valgus
• Distal to angulation –
• Apex of angulation –

Midline
Right
Left
Varus
- Distal to angulation – deviates to midline
- Apex of angulation – points from midline

Valgus
- Distal to angulation –
- Apex of angulation –
Varus
- Distal to angulation – deviates to midline
- Apex of angulation – points from midline

Valgus
- Distal to angulation – deviates from midline
- Apex of angulation – points to midline

Right | Midline | Left

![Diagram showing knee anatomy for varus and valgus angles](image-url)
Varus
- Distal to angulation – deviates to midline
- Apex of angulation – points from midline

Valgus
- Distal to angulation – deviates from midline
- Apex of angulation – points to midline

Midline

Right

Left
Normal Knee Alignment
Tibiofemoral angle
Tibiofemoral angle

- On standing radiograph
Tibiofemoral angle

- On standing radiograph

- Angle between lines parallel to:
 - Mid femoral diaphysis
 - Mid tibial diaphysis
Tibiofemoral angle

Tibiofemoral angle

- 0-1 yr - 10-17 varus

Tibiofemoral angle

- 0-1 yr - 10-17° varus
- 1-2 yrs 0-10° varus

Tibiofemoral angle

- 0-1 yr - 10-17° varus
- 1-2 yrs 0-10° varus
- 2-3 yrs 0-10° valgus

Tibiofemoral angle

- 0-1 yr - 10-17° varus
- 1-2 yrs 0-10° varus
- 2-3 yrs 0-10° valgus
- 3-4 yrs 8-12° valgus

Tibiofemoral angle

- 0-1 yr - 10-17° varus
- 1-2 yrs 0-10° varus
- 2-3 yrs 0-10° valgus
- 3-4 yrs 8-12° valgus
- 4-13 yrs ~6° valgus

Developmental changes

1-year-old

3-year-old

13-year-old
Developmental changes

1-year-old

3-year-old

13-year-old

Varus
Developmental changes

1-year-old
Varus

3-year-old
Valgus

13-year-old
Developmental changes

1-year-old
Varus

3-year-old
Valgus

13-year-old
Mild Valgus
Genu varum
Genu varum / Bowing

- Angular deformity at the knee
 - Apex of the deformity points away from the midline.
 - Leg (below knee) deviates toward the midline.

- Common referral to orthopedic clinics
Genu varum / Bowing

• **Angular deformity at the knee**
 – Apex of the deformity points away from the midline.
 – Leg (below knee) deviates toward the midline.

• **Common referral to orthopedic clinics**
Genu varum / Bowing

• Differential diagnosis:
 – Exaggerated ‘physiologic’ bowing
 – Blount disease
 – Abnormal bones
 – Metabolic bone disease
 – Skeletal dysplasias
 – Physeal/metaphyseal injury

Up-to-date, 2017
Genu varum / Bowing

• Differential diagnosis:
 – Exaggerated ‘physiologic’ bowing
 – Blount disease
 – Abnormal bones
 – Metabolic bone disease
 – Skeletal dysplasias
 – Physeal/metaphyseal injury

Up-to-date, 2017
Exaggerated Physiologic Bowing
Exaggerated Physiologic Bowing

- Exaggeration of the normal age-related bowing
- Birth – 2yrs
- Bilateral & symmetric
- Normal stature
 - ≤ 2 sd of mean height for age & sex
Exaggerated Physiologic Bowing

- Radiographs
Exaggerated Physiologic Bowing

• Radiographs
 – Varus angulation

20° varus
1-2 years
nl = 0-10° varus
23-month-old
Exaggerated Physiologic Bowing

• Radiographs
 – Varus angulation
 – Medial tibial metaphysis
 • Mild enlargement / depression
 • Mild beaking
 • No fragmentation
Exaggerated Physiologic Bowing

- Radiographs
 - Varus angulation
 - Medial tibial metaphysis
 - Mild enlargement / depression
 - Mild beaking
 - No fragmentation
Exaggerated Physiologic Bowing

- **Radiographs**
 - Varus angulation
 - Medial tibial metaphysis
 - Mild enlargement / depression
 - Mild beaking
 - No fragmentation
 - Mild thickening of the medial tibial cortex
Exaggerated Physiologic Bowing

- Radiographs
 - Varus angulation
 - Medial tibial metaphysis
 • Mild enlargement / depression
 • Mild beaking
 • No fragmentation
 - Mild thickening of the medial tibial cortex
 - Normal metaphysial-diaphysial angle
Metaphyseal Diaphyseal Angle

- MDA – the angle between:
Metaphyseal Diaphyseal Angle

- MDA – the angle between:
 - Line drawn along the proximal tibial metaphysis
Metaphyseal Diaphyseal Angle

• MDA – the angle between:
 – Line drawn along the proximal tibial metaphysis
 – Line perpendicular to the long axis of the tibia
Metaphyseal Diaphyseal Angle

• MDA – the angle between:
 – Line drawn along the proximal tibial metaphysis
 – Line perpendicular to the long axis of the tibia

• MDA values
 – Physiologic bowing
 • MDA typically ≤ 11°
 – Blount disease
 • MDA typically > 11°
 – Borderline 8-11°
Exaggerated Physiologic Bowing

Initial

7 months later
Blount Disease
Blount Disease (Tibia Vara)

- Developmental disorder with disrupted endochondral ossification of the medial proximal tibial physis
 - Abnormal development of the proximal, medial tibial epiphysis/metaphysis
Blount Disease (Tibia Vara)

• Developmental disorder with disrupted endochondral ossification of the medial proximal tibial physis
 – Abnormal development of the proximal, medial tibial epiphysis/metaphysis

• Angular deformities:
 – Genu varum
 – Procurvatum
 – Internal rotation of the tibia
Blount Disease (Tibia Vara)

• Developmental disorder with disrupted endochondral ossification of the medial proximal tibial physis
 – Abnormal development of the proximal, medial tibial epiphysis/metaphysis

• Angular deformities:
 – Genu varum
 – Procurvatum
 – Internal rotation of the tibia

• Limb shortening
 – Leg length discrepancy if asymmetric or unilateral
Blount Disease

• Risk factors:
 – Early ambulation
 – Obesity
 – African or Scandinavian descent
Blount Disease

• Risk factors:
 – Early ambulation
 – Obesity
 – African or Scandinavian descent

• Etiology: unknown (likely multifactorial)
 – Risk factors of early ambulation & obesity suggest biomechanical component
Blount Disease

- Risk factors:
 - Early ambulation
 - Obesity
 - African or Scandinavian descent

- Etiology: unknown (likely multifactorial)
 - Risk factors of early ambulation & obesity suggest biomechanical component

- Two forms:
 - Infantile or early onset < 4 years
 - Late onset >4 yrs
 - Juvenile 4 -10 yrs
 - Adolescent >10 yrs
Langenskiöld Classification of Early Onset Blount Disease

Radiographic findings
Radiographic findings
Standing AP radiograph
Radiographic findings

Standing AP radiograph

- Genu Varum
Radiographic findings
Standing AP radiograph

• Genu Varum

Tibiofemoral angles
~20°

1-2 years
nl = 0-10° varus

15-month-old
Radiographic findings

• Genu Varum (Standing AP radiograph)

• Increased metaphyseal-diaphyseal angle (MDA)
 – Physiologic bowing
 • MDA typically $\leq 11^\circ$
 – Blount disease
 • MDA typically $> 11^\circ$
 – Borderline 8-11$^\circ$
Radiographic findings

- Genu Varum (Standing AP radiograph)
- Increased metaphyseal-diaphyseal angle (MDA)
 - Physiologic bowing
 - MDA typically $\leq 11^\circ$
 - Blount disease
 - MDA typically $> 11^\circ$
 - Borderline $8-11^\circ$
Radiographic findings

- Genu Varum (Standing AP radiograph)
- Increased metaphyseal-diaphyseal angle (MDA)
Radiographic findings

- Genu Varum (Standing AP radiograph)
- Increased metaphyseal-diaphyseal angle (MDA)
- Widened medial tibial physis
- Medial tibial metaphysis
 - Depression
 - “Beaked”
 - Irregular / fragmented
Radiographic findings

- Genu Varum (Standing AP radiograph)
- Increased metaphyseal-diaphyseal angle (MDA)
- Widened medial tibial physis
- Medial tibial metaphysis
 - Depression
 - “Beaked”
 - Irregular / fragmented
Radiographic findings

• Genu Varum (Standing AP radiograph)
• Increased metaphyseal-diaphyseal angle (MDA)
• Widened medial tibial physis
• Medial tibial metaphysys
 – Depression
 – “Beaked”
 – Irregular / fragmented
Radiographic findings

- Genu Varum (Standing AP radiograph)
- Increased metaphyseal-diaphyseal angle (MDA)
- Widened medial tibial physis
- Medial tibial metaphysis
 - Depression
 - “Beaked”
 - Irregular / fragmented
Radiographic findings

- Genu Varum (Standing AP radiograph)
- Increased metaphyseal-diaphyseal angle (MDA)
- Widened medial tibial physis
- Medial tibial metaphysis
 - Depression
 - “Beaked”
 - Irregular / fragmented
Radiographic findings

- Genu Varum (Standing AP radiograph)
- Increased metaphyseal-diaphyseal angle (MDA)
- Widened medial tibial physis
- Medial tibial metaphysis
 - Depression
 - “Beaked”
 - Irregular / fragmented
Radiographic findings

- Genu Varum (Standing AP radiograph)
- Increased metaphyseal-diaphyseal angle (MDA)
- Widened medial tibial physis
- Medial tibial metaphysis
 - Depression
 - “Beaked”
 - Irregular / fragmented
- Medial tibial epiphysis
 - Abnormal/delayed ossification
Radiographic findings

- Angular deformities:
 - Genu varum
 - Lateral subluxation of the tibia
 - Procurvatum
Radiographic findings

• Angular deformities:
 – Genu varum
 – Lateral subluxation of the tibia
 – Procurvatum
Radiographic findings

• Angular deformities:
 – Genu varum
 – Lateral subluxation of the tibia
 – Procurvatum
 • Lateral radiograph

10 year old
Radiographic findings

• Angular deformities:
 – Genu varum
 – Lateral subluxation of the tibia
 – Procurvatum
 • Lateral radiograph
Radiographic findings

• Angular deformities:
 – Genu varum
 – Lateral subluxation of the tibia
 – Procurvatum
 • Lateral radiograph
MRI Findings
MRI Findings
Medial Proximal Tibia
MRI Findings
Medial Proximal Tibia

• Physis / metaphysis
 – Physeal widening
MRI Findings
Medial Proximal Tibia

- Physis / metaphysis
 - Physeal widening
 - Downsloping / irregularity
MRI Findings

Medial Proximal Tibia

• Physis / metaphysis
 – Physeal widening
 – Downsloping / irregularity
MRI Findings

Medial Proximal Tibia

• Physis / metaphysis
 – Physeal widening
 – Downsloping / irregularity
 – Physeal Bridge
MRI Findings

Medial Proximal Tibia

• Physis / metaphysis
 – Physeal widening
 – Downsloping / irregularity
 – Physeal Bridge
MRI Findings

Medial Proximal Tibia

• Physis / metaphysis
 – Physeal widening
 – Downsloping / irregularity
 – Physeal Bridge

• Epiphyseal cartilage
 – Far medial – thick
 – Central medial - thin
 • Increased joint space
MRI Findings

Medial Proximal Tibia

• Physis / metaphysis
 – Physeal widening
 – Downsloping / irregularity
 – Physeal Bridge

• Epiphyseal cartilage
 – Far medial – thick
 – Central medial - thin
 • Increased joint space
MRI Findings
Medial Proximal Tibia

• Physis / metaphysis
 – Physeal widening
 – Downsloping / irregularity
 – Physeal Bridge

• Epiphyseal cartilage
 – Far medial – thick
 – Central medial - thin
 • Increased joint space

MRI Findings

Medial Proximal Tibia

- Physis / metaphysis
 - Physeal widening
 - Downsloping / irregularity
 - Physeal Bridge

- Epiphyseal cartilage
 - Far medial – thick
 - Central medial - thin
 - Increased joint space

MRI Findings

Medial Proximal Tibia

• Physis / metaphysis
 – Physeal widening
 – Downsloping / irregularity
 – Physeal Bridge

• Epiphyseal cartilage
 – Far medial – thick
 – Central medial - thin
 • Increased joint space

• Medial Meniscus
 – Thickened +/- abnormal signal
MRI Findings

Medial Proximal Tibia

• Physis / metaphysis
 – Physeal widening
 – Downsloping / irregularity
 – Physeal Bridge

• Epiphyseal cartilage
 – Far medial – thick
 – Central medial - thin
 • Increased joint space

• Medial Meniscus
 – Thickened +/- abnormal signal
MRI Findings
Medial Proximal Tibia

• Physis / metaphysis
 – Physeal widening
 – Downsloping / irregularity
 – Physeal Bridge

• Epiphyseal cartilage
 – Far medial – thick
 – Central medial - thin
 • Increased joint space

• Medial Meniscus
 – Thickened +/- abnormal signal
MRI Findings

Medial Proximal Tibia

• Physis / metaphysis
 – Physeal widening
 – Downsloping / irregularity
 – Physeal Bridge

• Epiphyseal cartilage
 – Far medial – thick
 – Central medial - thin
 • Increased joint space

• Medial Meniscus
 – Thickened +/- abnormal signal

• Angular deformities
 – Medial and posterior downsloping
MRI Findings

Other findings:
MRI Findings
Other findings:

• Lateral proximal tibia
 – Physis - widened/irregular
 – Metaphysis
MRI Findings

Other findings:

• Lateral proximal tibia
 – Physis - widened/irregular
 – Metaphysis
MRI Findings

Other findings:

- Lateral proximal tibia
 - Physis
 - Metaphysis - irregular
MRI Findings

Other findings:

• Lateral proximal tibia
 – Physis
 – Metaphysis

• Femur
 – Epiphysis
 – Metaphysis
 – Physis
MRI Findings

Other findings:

- Lateral proximal tibia
 - Physis
 - Metaphysis
- Femur
 - Epiphysis
 - Metaphysis
 - Physis

MRI Findings
Other findings:

• Lateral proximal tibia
 – Physis
 – Metaphysis

• Femur
 – Epiphysis
 – Metaphysis
 – Physis

MRI Findings

Other findings:

- Lateral proximal tibia
 - Physis
 - Metaphysis
- Femur
 - Epiphysis
 - Metaphysis
 - Physis
- Soft tissues
 - Perichondral membrane
 - Thickened
 - ACL - laxity

Treatment of Blount Disease
Treatment

• Conservative
 – Observation
 – Orthosis
Treatment

• Conservative
 – Observation
 – Orthosis

• Surgery
 – Lateral hemiepiphysodeesis
 – Resection of a physeal bar
 – Realignment osteotomy
Treatment

• Conservative
 – Observation
 – Orthosis

• Surgery
 – Lateral hemiepiphysseodesis
 – Resection of a physeal bar
 – Realignment osteotomy
Treatment

• Conservative
 – Observation
 – Orthosis

• Surgery
 – Lateral hemiepiphysiodysis
 – Resection of a physeal bar
 – Realignment osteotomy
Treatment

• Conservative
 – Observation
 – Orthosis

• Surgery
 – Lateral hemiepiphysodeesis
 – Resection of a physeal bar
 – Realignment osteotomy
Genu varum / Bowing

• Differential diagnosis:
 – Exaggerated ‘physiologic’
 – Blount disease
 – Abnormal bones
 – Metabolic bone disease
 – Skeletal dysplasias
 – Physeal/metaphyseal injury
Genu varum / Bowing

- Differential diagnosis:
 - Exaggerated ‘physiologic’
 - Blount disease
 - Abnormal bones
 - Metabolic bone disease
 - Skeletal dysplasias
 - Physeal/metaphyseal injury
Genu varum / Bowing

- Differential diagnosis:
 - Exaggerated ‘physiologic’
 - Blount disease
 - Abnormal bones
 - Metabolic bone disease
 - Rickets
 - Skeletal dysplasias
 - Physeal/metaphyseal injury
Genu varum / Bowing

- Differential diagnosis:
 - Exaggerated ‘physiologic’
 - Blount disease
 - Abnormal bones
 - Metabolic bone disease
 - Rickets
 - Skeletal dysplasias
 - Physeal/metaphyseal injury

3-year-old girl with rickets
Genu varum / Bowing

- Differential diagnosis:
 - Exaggerated ‘physiologic’
 - Blount disease
 - Abnormal bones
 - Metabolic bone disease
 - Skeletal dysplasias
 - Achondroplasia
 - Physeal/metaphyseal injury

4-year-old boy with achondroplasia
Genu varum / Bowing

- Differential diagnosis:
 - Exaggerated ‘physiologic’
 - Blount disease
 - Abnormal bones
 - Metabolic bone disease
 - Skeletal dysplasias
 - Achondroplasia
 - Physeal/metaphyseal injury

5-year-old boy with achondroplasia
Genu varum / Bowing

• Differential diagnosis:
 – Exaggerated ‘physiologic’
 – Blount disease
 – Abnormal bones
 – Metabolic bone disease
 – Skeletal dysplasias
 – Physeal/metaphyseal injury
Physeal/metaphyseal injury

- Chronic repetitive (overuse) injuries
- Physeal injury -> Bridge
Physeal/metaphyseal injury

- Chronic repetitive (overuse) injuries
- Physeal injury -> Bridge

Can cause genu varum or valgum
Depending on location of injury
Physeal/metaphyseal injury

- Chronic repetitive (overuse) injuries
- Physeal injury -> Bridge
Physeal/metaphyseal injury

- Chronic repetitive (overuse) injuries
 - Disruption of metaphyseal blood supply
 - Disruption of endochondral ossification
Physeal/metaphyseal injury

- Chronic repetitive (overuse) injuries
 - > Disruption of metaphyseal blood supply
 - > Disruption of endochondral ossification

14-year-old competitive soccer player
2-month follow up after rest
Physeal/metaphyseal injury

Laor T. et. al. Physeal Widening in the Knee Due to Stress Injury in Child Athletes. AJR 2006
Physeal/metaphyseal injury

11 years

Laor T. et. al. Physeal Widening in the Knee Due to Stress Injury in Child Athletes. AJR 2006
Physeal/metaphyseal injury

Laor T. et. al. Physeal Widening in the Knee Due to Stress Injury in Child Athletes. AJR 2006

11 years

2 year follow up
Physeal/metaphyseal injury

Laor T. et. al. Physeal Widening in the Knee Due to Stress Injury in Child Athletes. AJR 2006

11 years

17 years
Genu valgum
Genu Valgum / Knock Knees

- Angular deformity at the knee
 - Apex of the deformity points toward the midline.
 - Leg (below knee) deviates away from the midline.

- Common referral to orthopedic clinics
Genu Valgum / Knock Knees

• Angular deformity at the knee
 – Apex of the deformity points toward the midline.
 – Leg (below knee) deviates away from the midline.

• Common referral to orthopedic clinics
Genu Valgum

• Differential diagnosis:
 – Exaggerated ‘physiologic’
 – Physeal/metaphyseal injuries
 – Abnormal bones
 – Tumors
Genu Valgum

• Differential diagnosis:
 – Exaggerated ‘physiologic’
 – Physeal/metaphyseal injuries
 – Abnormal bones
 – Tumors
Exaggerated ‘Physiologic’ Valgum

- Exaggeration of the normal age-related valgus
- Age: 3-5 yrs
- Bilateral & symmetric
- Normal stature
- Absent or mild symptoms
Exaggerated ‘Physiologic’ Valgum

- Exaggeration of the normal age-related valgus
- Age: 3-5 yrs
- Bilateral & symmetric
- Normal stature
- Absent or mild symptoms
Exaggerated ‘Physiologic’ Valgum

- Exaggeration of the normal age-related valgus
- Age: 3-5 yrs
- Bilateral & symmetric
- Normal stature
- Absent or mild symptoms
Genu Valgum

- Differential diagnosis:
 - Exaggerated ‘physiologic’
 - Physeal/metaphyseal injuries
 - Chronic repetitive (overuse) injuries
 - Physeal injury -> Bridge
 - Cozen Phenomenon
 - Abnormal bones
 - Tumors
Physeal Injury -> Bridge

• Causes
 – Trauma – most common cause
 – Other causes:
 • Infection
 • Radiation
 • Medications
 • Tumors
Risk Factors of Bridge Formation

- Severity of injury
- Growth potential
 - Younger / less skeletal maturity
- Anatomic site
 - Contour of the physis & growth rate
Risk Factors of Bridge Formation

Anatomic site:
Risk Factors of Bridge Formation

Anatomic site:

• Distal radius

• Distal femur
Risk Factors of Bridge Formation

Anatomic site:

• Distal radius

• Distal femur
Risk Factors of Bridge Formation

Anatomic site:

- Distal radius – smooth, uniplanar
- Distal femur
Risk Factors of Bridge Formation

Anatomic site:

• Distal radius – smooth, uniplanar

• Distal femur - undulating, multiplanar physis
Risk Factors of Bridge Formation

Anatomic site:

• Distal radius – smooth, uniplanar

• Distal femur - undulating, multiplanar physis
Risk Factors of Bridge Formation

Anatomic site:

- Distal radius – smooth, uniplanar

- Distal femur - undulating, multiplanar physis

- Physeal fx: Radius >>> Femur
- % -> Bridges : Femur >>> Radius
10 year old girl
10-year-old girl with history of a distal femur fracture
Imaging Physeal Bridges

Radiographs

- Directly visualized
- Indirect evidence
 - Narrowing of the physis
 - Growth recovery lines

10-year-old girl with history of a distal femur fracture
Imaging Physeal Bridges

Radiographs

• Directly visualized
• Indirect evidence
 – Narrowing of the physis
 – Growth recovery lines

10-year-old girl with history of a distal femur fracture
Imaging Physeal Bridges

Radiographs

• Directly visualized

• Indirect evidence
 – Narrowing of the physis
 – Growth recovery lines

10-year-old girl with history of a distal femur fracture
Imaging Physeal Bridges

Radiographs

• Directly visualized

• Indirect evidence
 – Narrowing of the physis
 – Growth recovery lines
 • Normal - parallel physis

10-year-old girl with history of a distal femur fracture
Imaging Physeal Bridges

Radiographs

• Directly visualized

• Indirect evidence
 – Narrowing of the physis
 – Growth recovery lines
 • Normal - parallel physis

10-year-old girl with history of a distal femur fracture
Imaging Physeal Bridges

Radiographs

• Directly visualized

• Indirect evidence
 – Narrowing of the physis
 – Growth recovery lines
 • Normal - parallel physis
 • Abnormal – Oblique, converge at physeal bridge

10-year-old girl with history of a distal femur fracture
Imaging Physeal Bridges

Radiographs

- Directly visualized
- Indirect evidence
 - Narrowing of the physis
 - Growth recovery lines
 - Normal - parallel physis
 - Abnormal – Oblique, converge at physeal bridge

10-year-old girl with history of a distal femur fracture
Imaging Physeal Bridges

Radiographs

• Directly visualized
• Indirect evidence
 – Narrowing of the physis
 – Growth recovery lines
 • Normal - parallel physis
 • Abnormal – Oblique, converge at physeal bridge

10-year-old girl with history of a distal femur fracture
Treatment of Physeal Bridges

- Resection
Treatment of Physeal Bridges

• Resection considered if:
 – Existing or developing deformity
Treatment of Physeal Bridges

• Resection considered if:
 – Existing or developing deformity
 – ≥ 2 years or 2 cm of remaining growth
Treatment of Physeal Bridges

• Resection considered if:
 – Existing or developing deformity
 – ≥ 2 years or 2 cm of remaining growth
 – Bridge occupies < 50% of the physeal area
Treatment of Physeal Bridges

• Resection considered if:
 – Existing or developing deformity
 – ≥ 2 years or 2 cm of remaining growth
 – Bridge occupies $< 50\%$ of the physeal area
Treatment of Physeal Bridges

- Resection considered if:
 - Existing or developing deformity
 - ≥ 2 years or 2 cm of remaining growth
 - Bridge occupies $< 50\%$ of the physeal area

GRE
Treatment of Physeal Bridges

- Resection considered if:
 - Existing or developing deformity
 - ≥ 2 years or 2 cm of remaining growth
 - Bridge occupies $< 50\%$ of the physeal area
Treatment of Physeal Bridges

- Resection considered if:
 - Existing or developing deformity
 - ≥ 2 years or 2 cm of remaining growth
 - Bridge occupies $< 50\%$ of the physeal area

Area of Bridge

Total Area of Physis
Treatment of Physeal Bridges

- Resection considered if:
 - Existing or developing deformity
 - \geq 2 years or 2 cm of remaining growth
 - Bridge occupies $< 50\%$ of the physeal area

\[
\frac{\text{Area of Bridge}}{\text{Total Area of Physis}} = \% \text{ of Physis Occupied by Bridge}
\]
Physeal Bridge

• Treatment options:
 – Bridge resection
 – Osteotomy to correct angular deformities
Physeal Bridge

• Treatment options:
 – Bridge resection
 – Osteotomy to correct angular deformities
 – Contralateral epiphysiodesis
Genu Valgum

• Differential diagnosis:
 – Exaggerated ‘physiologic’
 – Physeal/metaphyseal injuries
 – Chronic repetitive (overuse) injuries
 – Physeal injury -> Bridge
 – Cozen Phenomenon
 – Abnormal bones
 – Tumors
Genu Valgum

• Differential diagnosis:
 – Exaggerated ‘physiologic’
 – Physeal/metaphyseal injuries
 – Chronic repetitive (overuse) injuries
 – Physeal injury -> Bridge
 – Cozen Phenomenon
 • Valgus deformity s/p proximal tibial fx
 – Despite good alignment at fx site

Genu Valgum

• Differential diagnosis:
 – Exaggerated ‘physiologic’
 – Physeal/metaphyseal injuries
 – Chronic repetitive (overuse) injuries
 – Physeal injury -> Bridge
 – Cozen Phenomenon
 • Valgus deformity s/p proximal tibial fx
 – Despite good alignment at fx site

Genu Valgum

• Differential diagnosis:
 – Exaggerated ‘physiologic’
 – Physeal/metaphyseal injuries
 – Chronic repetitive (overuse) injuries
 – Physeal injury -> Bridge
 – Cozen Phenomenon
 • Valgus deformity s/p proximal tibial fx
 – Despite good alignment at fx site

Genu Valgum

• Differential diagnosis:
 – Exaggerated ‘physiologic’
 – Physeal/metaphyseal injuries
 – Chronic repetitive (overuse) injuries
 – Physeal injury -> Bridge
 – Cozen Phenomenon
 • Valgus deformity s/p proximal tibial fx
 – Despite good alignment at fx site

Genu Valgum

• Differential diagnosis:
 – Exaggerated ‘Physiologic’
 – Physeal/metaphyseal injuries
 – Chronic repetitive (overuse) injuries
 – Physeal injury -> Bridge
 – Cozen Phenomenon
 • Most accepted theory
 – Fx -> ↑ vascularity -> medial metaphyseal overgrowth

Genu Valgum

• Differential diagnosis:
 – Exaggerated ‘Physiologic’
 – Physeal/metaphyseal injuries
 – Abnormal bones
 – Tumors
Genu Valgum

• Differential diagnosis:
 – Exaggerated ‘Physiologic’
 – Physeal/metaphyseal injuries
 – Abnormal bones
 – Metabolic bone disease
 – Rickets

5-year-old boy with rickets
Genu Valgum

• Differential diagnosis:
 – Exaggerated ‘Physiologic’
 – Physeal/metaphyseal injuries
 – Abnormal bones
 – Metabolic bone disease
 – Rickets

5-year-old boy with rickets
Genu Valgum

- Differential diagnosis:
 - Exaggerated ‘Physiologic’
 - Physeal/metaphyseal injuries
 - Abnormal bones
 - Metabolic bone disease
 - Rickets

5-year-old boy with rickets
Genu Valgum

• Differential diagnosis:
 – Exaggerated ‘Physiologic’
 – Physeal/metaphyseal injuries
 – Abnormal bones
 – Metabolic bone disease
 – Lysosomal storage disease
 – Mucopolysaccharidosis IV (Morquio syndrome)

Mucopolysaccharidosis IV
Genu Valgum

• Differential diagnosis:
 – Exaggerated ‘Physiologic’
 – Physeal/metaphyseal injuries
 – Abnormal bones
 – Metabolic bone disease
 – Lysosomal storage disease
 – Mucopolysaccharidosis IV (Morquio syndrome)
Genu Valgum

- Differential diagnosis:
 - Exaggerated ‘Physiologic’
 - Physeal/metaphyseal injuries
 - Abnormal bones
 - Metabolic bone disease
 - Lysosomal storage disease
 - Mucopolysaccharidosis IV (Morquio syndrome)
Genu Valgum

- Differential diagnosis:
 - Exaggerated ‘Physiologic’
 - Physeal/metaphyseal injuries
 - Abnormal bones
 - Metabolic bone disease
 - Lysosomal storage disease
 - Skeletal dysplasias
 - Chondroectodermal dysplasia (Ellis-van Crevald)
Genu Valgum

• Differential diagnosis:
 – Exaggerated ‘Physiologic’
 – Physeal/metaphyseal injuries
 – Abnormal bones
 – Metabolic bone disease
 – Lysosomal storage disease
 – Skeletal dysplasias
 – Chondroectodermal dysplasia (Ellis-van Crevald)
Genu Valgum

- Differential diagnosis:
 - Exaggerated ‘Physiologic’
 - Physeal/metaphyseal injuries
 - Abnormal bones
 - Metabolic bone disease
 - Lysosomal storage disease
 - Skeletal dysplasias
 - Chondroectodermal dysplasia (Ellis-van Crevald)
Genu Valgum

• Differential diagnosis:
 – Exaggerated ‘Physiologic’
 – Physeal/metaphyseal injuries
 – Abnormal bones
 – Tumors
 – Osteochondromas / Multiple hereditary exostosis
Genu Valgum

- Differential diagnosis:
 - Exaggerated ‘Physiologic’
 - Physeal/metaphyseal injuries
 - Abnormal bones
 - Tumors
 - Osteochondromas / Multiple hereditary exostosis
Summary
Summary

• Normal developmental changes at the knee
Summary

• Genu Varum
 – Exaggerated Physiologic
 – Blount
 – Abnormal Bones
 – Injuries

• Genu Valgum
 – Exaggerated ‘Physiologic’
 – Physeal/metaphyseal injuries
 – Abnormal bones
 – Tumors
References