Nuclear Medicine Technologist Role in MIBG Therapy

Monica Pinson, CNMT, Christopher Bui, CNMT, Adina Alazraki, MD, FAAP
Children’s Healthcare of Atlanta, Department of Radiology
Emory University, Departments of Radiology and Imaging Sciences and Pediatrics
Introduction: Neuroblastoma

• Most common extracranial solid pediatric cancer
• 50-60% of cases present w/ metastases
• 40-50% survival rate in high-risk patients
• MIBG therapy is promising for MIBG-avid disease
Introduction: I-131 MIBG

- Meta-IodoBenzylGuanidine, or MIBG is chemically related to norepinephrine
- 90% neuroblastoma is MIBG-avid
- When labeled with I-123 or I-131, MIBG has both diagnostic and therapeutic utility in neuroblastoma and other neuroendocrine tumors
MIBG Therapy at CHOA:

• CHOA began performing MIBG therapies in July of 2013 after a grant from a patient’s family allowed us to create a state of the art therapy program in the Southeast.

• CHOA is a Children’s Oncology Group Phase I institution and a member of the New Approaches to Neuroblastoma Therapy (NANT) consortium.
Purpose:

- Highlight the role of the nuclear medicine technologist in MIBG therapy
- Share lessons learned after starting MIBG therapy program
- Share dose-saving techniques that we have adopted to keep staff within limits
MIBG Therapy Prep:

- The role of the technologist begins before the patient arrives
- Radiation safety precautions that begin with our preparations have resulted in lower radiation exposure rates to technologists, staff, and families.
Day 0: Room/Hot Lab Preparation

- Hot lab wrapped
- All supplies needed for both QC and dose draw are assembled
- Infusion pump is charged and tested with saline dose to ensure accurately dose delivery
Day 0: Room Preparation
Day 0: Room Preparation
Day 1: Patient Prep

- Education (patient, family, healthcare providers)
- Port accessed if not CVL, PIV placed if needed
- Foley catheter
- NG tube
Day 1: Pretreatment

- SSKI Loading Dose
- 0.1mg/kg Zofran 30 minutes before administration
- Anxiolysis medication if needed
Day 1: Dose Prep

• The dose is drawn and QC is performed

• Dose transported on cart with lead shielded infusion pump and L-Block
Day 1: Dose Administration

• Infuse I-131 MIBG dose @ 20ml/hr over 90 minutes
• Follow-up with NS flush @ 60ml/hr over 30 minutes

• Patient dose is usually 18mCi/kg
• Doses have ranged from 187 mCi to 1206 mCi
Day 1-8: Monitoring

- Physicist takes 1m measurements of patient at start and after 90 minutes
- Daily measurements thereafter
- When patient reaches exposure rate <7 mrem/hr at 1 meter patient is discharged
Discharge

• Patient is discharged when exposure readings are below 7 mR/hr
 • Typically day 3 or 4
Post Therapy Scan

- Upon discharge, immediately before patient leaves the hospital
- Takes advantage of large dose to see full extent of disease
Therapy Room Cleanup

Waste and contaminated items stored in long term storage for decay.
Results: Technologist Dose

• Exposure dose to the tech during preparation/draw:
 – Range: 0.001-0.049 microSv per MBq administered

• Exposure during administration:
 – Range: 0.001-0.027 microSv per MBq admin
Results: Technologist Dose

- Average exposure is comparable or lower than published data from other facilities
Unexpected Challenges

• Problems with Foley catheter or urine pump

• Infusion pump issues

• Projectile vomiting

• Troubleshooting with pediatric population
What Can We Do to Protect Ourselves?

- Rotate technologists administering
- Paired technologist teams
- Time, Distance, Shielding
- Monitor
- EDUCATE!