Disclosure

- Consultant/Author for Amirsys/Elsevier
Outline

• Background: Revised ISSVA classification

• Approach: Why/when/how to image

• Details:
 – MSK implications
 – Clues to specific lesions
 – Difficult cases
Background
Histology!

- 1982: Mulliken and Glowacki
 - Histology-based classification
 - Neoplasms vs. malformations
 - ISSVA adopts modified scheme in 1996

- Unfortunately...widespread misuse of terminology persists
Revised 2014 ISSVA Classification

- Attempt to create evolving scheme based on
 - Histopathology
 - Genetics
 - Clinical behavior of lesion

- Many fundamentals unchanged
 - A few new categories
 - Many new lesions
ISSVA classification for vascular anomalies

(Approved at the 20th ISSVA Workshop, Melbourne, April 2014)

Overview table

<table>
<thead>
<tr>
<th>Vascular tumors</th>
<th>Vascular malformations</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Simple</td>
</tr>
<tr>
<td>Benign</td>
<td>Capillary malformations</td>
</tr>
<tr>
<td>Locally aggressive or</td>
<td>Lymphatic malformations</td>
</tr>
<tr>
<td>border line</td>
<td>Venous malformations</td>
</tr>
<tr>
<td>Malignant</td>
<td>Arteriovenous malformations*</td>
</tr>
<tr>
<td></td>
<td>Arteriovenous fistula*</td>
</tr>
</tbody>
</table>

ISSVA classification of vascular tumors

Benign vascular tumors

- Infantile hemangioma / Hemangioma of infancy
- Congenital hemangioma
 - Rapidly involuting (RICH) *
 - Non-involuting (NICH)
 - Partially involuting (PICH)
- Tufted angioma *
- Spindle-cell hemangioma
- Epithelioid hemangioma
- Pyogenic granuloma (aka lobular capillary hemangioma)
- Others

Locally aggressive or borderline vascular tumors

- Kaposiform hemangioendothelioma *
- Retiform hemangioendothelioma
- Papillary intralymphatic angioendothelioma (PILA), Dabska tumor
- Composite hemangioendothelioma
- Kaposi sarcoma
- Others

Malignant vascular tumors

- Angiosarcoma
- Epithelioid hemangioendothelioma
- Others

Simple vascular malformations II

Lymphatic malformations (LM)

- Common (cystic) LM
 - Macrocystic LM
 - Microcystic LM
 - Mixed cystic LM
- Generalized lymphatic anomaly (GLA)
- LM in Gorham-Stout disease
- Channel type LM
- Primary lymphedema *(different types)*
- Others

Approach
Histopathology

• Neoplasms vs. Malformations vs. Secondary
Clinical/Imaging

- Discrete masses vs. Macroscopic channel abnormalities

- High flow vs. Low flow lesions

- Focal vs. Multifocal vs. Extensive/Diffuse

- Combinations in certain anomalies/syndromes
Imaging: When, why

- Newly detected mass(es)
 - Diagnosis (especially without skin involvement)
 - Extent of focal lesion
 - Therapy options/baseline prior to intervention
Imaging: When, why

• Cutaneous lesion(s) with specific implications
 – Local complications

– Known associations of internal significance
 • Multifocal/extensive deep lesions
 • Other anomalies that may be remote/widespread
 – Congenital (visceral, vascular)
 – Tumor predisposition
MSK Implications
MSK Implications

• Growth disturbances
 – Overgrowth
 – Undergrowth
 – Deformities
• Hemarthrosis/degeneration
• Scoliosis
• Muscle dysfunction

Limb Length Discrepancy
Joint Involvement
Joint Involvement
Joint Involvement
Scoliosis
Scoliosis
Techniques: Limb vs. Joint
Limb assessment

Soft tissue/marrow

- Fat/marrow (T1)

- Fluid-sensitive (STIR/FS T2)

- Contrast or not? Subtraction?

- Other considerations
 - DWI
 - In/Out of phase
Limb assessment

Vascular

- Flow sensitive (2D SPGR, TOF)
- Dynamic enhanced techniques (Ultrafast 3D SPGR vs. 4D time-resolved)
- Traditional extracellular contrast vs. blood pool agent
- MR lymphangiography?
Soft tissue/marrow (T1)
Fat/marrow (STIR/FS T2)

2D TOF
20-40 min

Immediate post 3D T1 GRE
3 min
Joint assessment

- Dedicated coil!
- Hemosiderin-sensitive (GRE)
- Cartilage-sensitive
 - Traditional 2D: GRE, PD/IW +/- FS
 - High resolution 3D: GRE, Cube/SPACE/VISTA PD/T2
 - Advanced: T2 map, T1 rho, dGEMRIC
- Dynamic vs. early post-contrast
Questions

- Actual size of coverage (cm)
- Deep venous vs. arterial assessment (vs. none)
- Dedicated joint imaging
- Follow-up exam
Specific Lesions
Benign tumors

Infantile hemangioma
Congenital hemangioma
 - Rapidly involuting (RICH)
 - Non-involuting (NICH)
 - Partially involuting (PICH)

Tufted angioma
Spindle-cell hemangioma
Epithelioid hemangioma
Pyogenic granuloma
Others
Infantile Hemangioma

- Capillaries lined by plump endothelial cells
 - GLUT1+

- Age:
 - Proliferation: First weeks-months of life
 - Involution: Over years

- Coagulopathy: NO

- Therapy: Propranolol, steroids, rarely chemo
Infantile Hemangioma

• Rarely imaged unless deep or significant location

• Key imaging:
 – Solid, lobulated elongated or ovoid masses
 – Heterogeneous echogenicity
 – Highly vascular: Many low resistance arteries
 – Bright (not fluid) on FS T2; diffusely enhance early
 – Gradual fatty replacement

Infantile Hemangioma
Congenital Hemangioma

- Capillaries intermixed with dilated vessels, hematopoiesis
 - GLUT1-
- Age: Perinatal detection; proliferation ceases by birth
 - RICH: Involution over 3-12 months
 - NICH: Stable
- Coagulopathy
 - Consumptive: Mild, transient
- Therapy: None, excision, embolization, ? steroids
- Key imaging: Variable, can be more heterogeneous
Congenital Hemangioma
Locally aggressive/borderline tumors

Kaposiform hemangioendothelioma
Retiform hemangioendothelioma
Composite hemangioendothelioma
Papillary intralymphatic angioendothelioma/
Dabska tumor
Kaposi sarcoma
Others
Kaposiform Hemangioendothelioma

- Aggressive, infiltrative lesion
- Nodules of spindled endothelial cells with abnormal lymphatics
- Age: Infants most common (>90%)
- Coagulopathy
 - Consumptive: Severe, sustained
 - Kasabach-Merritt phenomenon
- Therapy: Sirolimus, vincristine, steroids

Kaposiform Hemangioendothelioma

• Key imaging:
 – Solid, poorly defined, infiltrative mass
 – May have nodular components of low/intermediate T2
 – Diffusely enhances
 – +/- Surrounding edema
 – Few large vessels internally

Kaposiform Hemangioendothelioma
Kaposiform Hemangioendothelioma
Kaposiform Hemangioendothelioma
Kaposiform Hemangioendothelioma
Venous malformation

- Isolated common VM
- Blue Rubber Bleb Nevus syndrome (BRBNS)
- Glomovenous
- Cerebral cavernous malformation
- Others
Venous Malformation

- Large dilated channels with muscularized walls
- Age: Congenital but presentation timing variable
- Coagulopathy
 - Localized intravascular
 - Rarely DIC
- Therapy: Compression, sclero, anticoagulation

- BRBNS
 - Numerous focal malformations, GI bleeding

Venous Malformation

• Key imaging:
 – Lobulated mass &/or numerous channels
 • Large intramuscular lesions often follow fiber orientation
 – Stagnant blood (fluid-fluid levels)
 • Compressible
 – Thrombi/phleboliths
 – +/- Prominent fat along margins
 – Patchy, gradual enhancement
Venous Malformation
Blue Rubber Bleb Nevus Syndrome
Lymphatic malformation

Common (cystic) LM
- Macrocystic
- Microcystic
- Mixed

Generalized lymphatic anomaly (GLA)

Gorham-Stout Disease

Channel type LM

Others
Lymphatic Malformation

- Macro/microcysts with characteristic endothelium
 - Prox1+
 - D240+

- Age: Congenital but presentation timing variable

- Coagulopathy
 - Localized intravascular
 - Rarely DIC

- Therapy: Compression, sclero, surgery, sirolimus

Lymphatic Malformation

• Key imaging
 – Multicystic mass
 • Varying fluid complexities in different cysts
 – Fluid-fluid levels
 – May show T1 shortening pre-contrast
 • Thin septations
 – +/- Rim enhancement
 – Extends across tissue planes/compartments

Lymphatic Malformation

Generalized Lymphatic Anomaly

- Macrocystic LM
- Pleural effusions
- Numerous noncontiguous cystic lesions
 - Bone (+/- expansion, no osteolysis)
 - Additional osseous fatty infiltration often present
 - Spleen

Generalized Lymphatic Anomaly
Gorham

- Microcystic LM
- Aggressive local osteolysis
- Visceral involvement much less common
- Characteristic imaging: Gradual destruction of multiple adjacent bones (beyond one joint)

Combined
- Capillary-venous malformations
- Capillary-lymphatic malformations
- Capillary-veno-lymphatic malformations
- Capillary-arterio-veno-lymphatic malformations
- Others

Syndromic malformations
- Klippel-Trenaunay
- Parkes-Weber
- Servelle-Martorell
- Sturge-Weber
- Maffuci
- CLOVES
- Proteus
- Bannayan-Riley-Ruvalcaba
Klippel-Trenaunay

- CM + VM +/- LM
 - No “high flow” components
- Limb overgrowth
 - Fat, bones, vessels
- Large lateral primitive veins
 - Thromboembolism
 - Thrombophlebitis
- Abnormal deep venous system
Klippel-Trenaunay
Maffucci

- Widespread enchondromas
- Soft tissue vascular anomalies with phleboliths
 - Spindle cell hemangioiomas
- Risk of malignancy
 - Enchondroma → Chondrosarcoma
 - Vascular → Angiosarcoma
 - Ovarian, GI, glial
CLOVES

Congenital
Lipomatous
Overgrowth
Vascular
malformations
Epidermal nevi
Spinal/Skeletal
anomalies
Unclassified anomalies
- Verrucous hemangioma
- Multifocal lymphangioendotheliomatosis with thrombocytopenia (MALT)/Cutaneovisceralangiomatosis with thrombocytopenia (CAT)
- Kaposiform lymphangiomatosis (KLA)
- PTEN hamartoma of soft tissue (PHOST)
Kaposiform Lymphangiomatosis (KLA)

- Lesion of spindle cells, abnormal lymphatics
- Age: Wide range (median 6.5 years)
- Coagulopathy:
 - Mild/moderate thrombocytopenia, hypofibrinogenemia
- Key imaging: Many GLA-type features, PLUS
 - Infiltrative microcystic-appearing disease of
 - Mediastinum, pleura, pericardium
 - Perihilar & peripheral pulmonary interstitium

Kaposiform Lymphangiomatosis (KLA)
Kaposiform Lymphangiomatosis (KLA)
Kaposiform Lymphangiomatosis (KLA)
PTEN Hamartoma of Soft Tissue (PHOST)

- Variety of vascular and fatty hamartomatous lesions, including high and low flow masses
- Variable age; clinical characteristics include
 - Macroccephaly, penile freckling, developmental delay
 - No coagulopathy

PTEN Hamartoma (PHOST)

Conclusions
Vascular Anomalies

• Initial clinical/imaging approach
 – Clinical: Age, cutaneous appearance, firmness, coagulopathy
 – Imaging:
 • Masses vs. vessels or combination
 • High or low flow
 • Focal or extensive

• Histology-based classification ultimately key for
 – Diagnosis
 – Prognosis
 – Treatment
MSK Specifics

- Many implications
 - Hemarthrosis/degeneration
 - Limb deformities
 - Scoliosis

- Depend on diagnosis, location, extent
How to Image

• Tailor protocols to specific needs
 – Coverage: Limb vs. Joint
 – Tissues: Osseous, soft tissues vs. synovium, cartilage
 – Vessels: Arteries, veins, or lymphatics

• Dig for more information from clinicians!
Final Diagnosis

• Many suggestive clinical/imaging features of specific vascular anomalies

• For a solid or mixed mass without clear clinical &/or imaging findings of a specific vascular anomaly, get tissue!
Thank you!
carl.merrow@cchmc.org