Imaging of Pediatric MSK Tumors

Kirsten Ecklund, M.D.
Boston Children’s Hospital
Harvard Medical School
kirsten.ecklund@childrens.harvard.edu
Tumor Imaging Goals

Diagnosis
- Lesion characterization
- Benign vs malignant
- DDX
- Extent of disease

Treatment
- Size, extent
- Treatment response
 - Tissue characterization (necrosis vs growth)
 - RECIST guidelines
- Surgical planning
 - Relationship to neurovascular structures
 - Measurements for custom reconstruction

Surveillance
- Local recurrence
- Metastatic search
Current MR Imaging Goals

• Highest resolution
 – even at small FOV

• Tissue characterization
 – Functional imaging
 – Metabolic imaging

• Decrease sedation
 – Motion correction

• Increase acquisition speed
Tumor Mimics/Pitfalls

- Inflammatory lesions
 - Osteoid osteoma
 - Chondroblastoma
 - Infection
 - Myositis ossificans
 - Histiocytosis
 - CRMO (CNO)

- Trauma/stress fracture

19 y.o. right elbow mass
Two 15 year olds with rt knee pain

D. Femur stress fx, p. tibia stress reaction

Primary bone lymphoma
Primary Osseous Lymphoma

- 6% of 1\textdegree \text{ bone tumors, <10\% of NHL}
- Commonly involves epiphyses and equivalents
- MR - “Infarct-like” appearance, sequestra
- 10-30\% multifocal
- 10-15\% metastases at dx
Osteosarcoma

- ~ 400 new cases/yr in U.S.
- #1 malignant bone tumor < 18 y.o.
- Peak age: 13-16 y.o., boys > girls
- Sites: d. femur (75%), p. tibia, p. humerus
- Risk factors: prior xrt, genetic predisposition (retinoblastoma, Li-Fraumeni, Rothmund-Thomson)

ES family of tumors

- ~ 200 new cases/yr
- Caucasian predominance
- Peak age: 10-15 y.o
- Sites: axial (54%), appendicular (42%)
- No risk factors
- Translocation of chromosomes 22 + 11 involving ESWR1 gene
18 m.o. with Ewing Sarcoma

- Ewing family (EFT)
- Chromosome 22
 - EWS gene translocation
 - Mesenchymal cell origin
- PET – all pts (BS deemphasized
COG* imaging guidelines for Osteosarcoma

<table>
<thead>
<tr>
<th>Site</th>
<th>Presentation / Pre-op</th>
<th>Post-op, On ChemoRx</th>
<th>Surveillance off Rx</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary tumor</td>
<td>AP, lat XR MR + contrast</td>
<td>XR q 16 wks MR (unless precluded by hardware)</td>
<td>XR q3 mo x4, q6 mo x4, q12 mo x2 MR for sxs</td>
</tr>
<tr>
<td>Bone Mets</td>
<td>AP, lat XR MR + contrast</td>
<td>MR if sxs</td>
<td>XR q3 mo x4, q6 mo x4, q12 mo x2 MR for sxs</td>
</tr>
<tr>
<td>Whole body</td>
<td>MDP bone scan PET?</td>
<td>MDP bone scan q16 wks PET?</td>
<td>MDP bone scan q3 mo x4, q6 mo x4, q1 2 mo x2 PET to evaluate abnormal imaging</td>
</tr>
<tr>
<td>Chest</td>
<td>PA, lat XR CT</td>
<td>XR q 2 mo. CT q 16 wks if abnormal in past</td>
<td>XR q6 mo x 6 CT q3 mo x 4, q6 mo x 2</td>
</tr>
</tbody>
</table>

COG* imaging guidelines for Ewing Family of Tumors

<table>
<thead>
<tr>
<th>Site</th>
<th>Presentation + prior to local control</th>
<th>On ChemoRx, post local control</th>
<th>Surveillance off Rx</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary tumor</td>
<td>AP, lat XR MR + contrast</td>
<td>XR – ½ way thru and at end of rx MR/CT – 3/4 months after local control</td>
<td>XR q3 mo x8, q6 mo x6, q12 mo x5 MR for sx</td>
</tr>
<tr>
<td>Whole body</td>
<td>MDP bone scan FDG-PET</td>
<td>MDP bone scan at end of rx PET at end of rx</td>
<td>MDP bone scan if sx PET if sx or abnormal imaging</td>
</tr>
<tr>
<td>Chest</td>
<td>PA, lat XR – dx only CT</td>
<td>CT – ½ way thru and at end of rx</td>
<td>XR q3 mo x 8, q6 mo x 6, q12 mo x 5 CT if abnormal CXR</td>
</tr>
</tbody>
</table>

Response Evaluation Criteria in Solid Tumors (RECIST)*

- Applies to primary and mets together
 - size-based assessment of tumor burden
- Sum of longest dimension of each lesion
- Requires measurable soft tissue
- Lesions must be \(\geq 10 \) mm
- Response:
 - Progression = \(\geq 20\% \) increase in sum (or new lesions)
 - Partial response = \(\geq 30\% \) decrease in sum
 - Complete response = disappearance of all lesions
- Unreliable for osteosarcoma
 - \(> 20\% \) show increased size despite rx response

Treatment Response MR Evaluation

• Diffusion weighted imaging (DWI)
• Dynamic contrast-enhanced MRI
• Whole body MR (FSE, DW)
• Spectroscopy
• Chemical shift (for marrow)
Comprehensive Bone Tumor Protocol

- Cor T1, FSEIR – entire bone
- Sag T2 fat sat
- Ax PD, T2 fat sat
- DWI/ADC – axial
- Spectroscopy- single voxel
- 3D GRE DCE – pre + post C
- C+ T1 fs short and long axis
DWI - Principle

• Brownian motion of water in extracellular tissues

• Tissue structure/ cellularity
 – Qualitative and Quantitative

• Restricted diffusion
 – Decrease in extracellular space (edema)
 – Increase in cell #, size (tumors, fibrosis)

• Increased diffusion
 – ↓ cell # (necrosis, cysts, fluid)
 – ↑ cell membrane permeability (ischemia)
DWI in MSK Tumors

• **Diagnosis:** *general rules*
 – Malignant = restricted diffusion
 – Benign tumors ~ “less restricted” diffusion
 – Myxoid content = ↑ diffusion

• **Response to therapy**
 – Necrosis → ↑ diffusion
 – Ischemia → ↑ diffusion
 – Recurrence/ metastases → ↓ diffusion
 – Post op change/hematoma → ↑ diffusion
18 m.o. boy with left thigh pain, swelling

Dx = Ewing Sarcoma
Same pt after 2 cycles chemo rx

DWI = bright, suggests restricted diff

ADC = bright \rightarrow increased diff, thus T2 effect

Path: “No viable tumor”
9 y.o. with left thigh pain

Dx: telangiectatic osteosarcoma
Telangiectatic Osteosarcoma: pre and post rx

@ Dx

s/p Rx

FSE T2 fs

DWI

ADC
DWI Quantitative Assessment

• ADC value (apparent diffusion coefficient)
 – Calculated from all b values in data set
 – \(\leq 1.5 \times 10^{-3} \text{ mm}^2/\text{sec} \) – high cellularity
 – Contaminated by capillary perfusion at low b

• PIDC (perfusion independent diff coef)
 – Higher b value data only (slow diffusion)
 – Eliminates perfusion effect
 – \(\leq 1.1 \times 10^{-3} \text{ mm}^2/\text{sec} \) – high cellularity

• Correlation with % necrosis would be ideal
13 y.o. with proximal tibial osteosarcoma

DX:

FSEIR

DWI

ADC Map

ADC = 2.5

3 cycles Rx:

ADC = 1.1

ADC = 1.1
12 y.o. with radiation induced, refractory OSA prox tibia

T2 fs:

DWI: (outside hospital exam, no DWI)

ADC:

@ dx s/p 2 cycles rx s/p change in rx
9 y.o. with limited ROM left hip: Synovial sarcoma

@ Dx

s/p 3 cycles rx

T2 fs T1 + gad DWI, b 500 ADC

0.6 – 0.9 0.8 – 1.9
Dynamic Contrast Enhanced MR

- Perfusion
 - Diagnosis
 - Response to therapy
- Pre-op angiography
- High temporal/ spatial resolution
- 3T – ↑T1 relax blood vs tissue → CNR
- Parallel imaging + faster sequences
 - TRICKS/ TWIST MRA
 - 3D LAVA/ VIBE – perfusion
 - ↑ small vessel visualization
DCE: Qualitative Assessment

• Tumor margin delineation
• First pass - simplified
 – Intense enhancement = residual/recurrent tumor
 – Intermediate enhancement = post rx fibrosis
 – Minimal enhancement = necrosis, edema, hemorrhage
• Guide bx @ dx or recurrence
DCE: Quantitative Assessment

7 y.o. boy with osteosarcoma s/p 2 cycles chemorx, pre-op eval

3D GRE VIBE/LAVA

Time Intensity Curves

Fem artery

Intramedullary tumor

Soft tissue mass
Surveillance Imaging

- Metastasis detection
- Problem-solving
- Local recurrence
 - Hardware artifact mitigation
 - MR techniques
 - Dual energy CT
- FDG-PET and WB MR complimentary
12 y.o. with EWS rt humerus, staging studies
Ewing Sarcoma – PET vs MRI in Response Assessment

Pre-ChemoRx

Post-ChemoRx

FSE-T2/FS

Post-Gd T1/FS

"F-FDG-PET

Courtesy of Stephan Voss, M.D.
Whole Body MR

- Metastatic survey
- Cancer predisposition surveillance
- Assessment of cortical bone, marrow, soft tissues

13 y.o. boy with NF1
19 y.o. with NF1, prior MPNST

BCH: SUV \geq 4.5 g/mL, surgical sampling/rxn
NF-1 and 18F-FDG-PET: SUV and final histology:

Benign plexiform -> atypical NF -> MPNST

Tsai et al. (2012) J. NeuroOnc 108:469

Courtesy of Stephan Voss, M.D.
NF-1 and MPNST

SUV_{max} = 5
Atyp NF

SUV_{max} = 4.2
Benign NF

SUV_{max} = 4.9
Atyp NF

SUV_{max} = 9.3
MPNST

Courtesy of Stephan Voss, M.D.
Molecular tissue characterization

Choline level (peak)
 - Increased cell membrane turnover
 - Correlates with malignancy

Single voxel techniques most useful

Susceptibility issues

Proton Spectroscopy

Hardware Imaging: Artifact Reduction

- General: high BW, ↓slice thick, ↑ matrix, ↑ ETL, ↓ TE
- SEMAC - optimized sequences – STIR, TSE (WARP)
- 1.5 T preferred
Summary

• Conventional and functional imaging techniques are complimentary.
• Together they improve our confidence
 – Dx
 – Response to therapy
 – Long term surveillance
• Size alone (RECIST) insufficient to assess rx response for OSA, EFT