Screening for and Assessment of Osteonecrosis in Oncology Patients

Sue C. Kaste, DO
SPR Postgraduate Course 2015
The author declares no potential conflicts of interest or financial disclosures.
Osteonecrosis (ON)
Avascular necrosis (AVN)
Aseptic necrosis
Ischemic necrosis

Dorland’s Medical Dictionary (28th ed): “death, or necrosis, of bone”

: “death of bone…”

: “…a disease caused by reduced blood flow to bones in the joints. …, the bone starts to die and may break down…”
Osteonecrosis

Not a specific disease entity, but the final common pathway of several conditions, most leading to impaired blood supply

17 y/o girl after ALL
Symptoms of osteonecrosis

- Early stages
 - Often asymptomatic
- Disease progresses
 - Joint pain when weight bearing
 - Joint pain when resting
- Pain usually develops gradually
 - Mild to severe
- Joint Collapse
 - Dramatic increase in pain
Hip ON lesion size correlates with pain score ($p=0.0023$) but…

… pain is an unreliable indicator of presence or severity of ON

Osteonecrosis

Most common anatomic locations

– Femoral head (hips; greatest morbidity)
– Distal femur/proximal tibia (knees)
– Humeral head
– Tarsal bones of the foot
Osteonecrosis

• Etiology multifactorial
• Associated risk factors
 – High-dose steroid therapy
 – Alcohol
 – Dysbaric
 – Radiation
 – Sickle cell disease
 – Gaucher’s disease
 – Trauma
• Idiopathic
Osteonecrosis

- Etiology multifactorial
- Associated risk factors in pediatric oncology
 - High-dose steroid therapy
 - Radiation

 - Direct effect on osteoblasts (inhibits bone formation)
 - Direct effect on osteoclasts (accelerates bone resorption)
 - Premature apoptosis
 - Increase adipocytosis
 - Increase intraosseous pressure
Osteonecrosis – in pediatric oncology...

Typically attributed to glucocorticoid exposure

– Glucocorticoids induce occluding angiopathy
 (Janke et al 2013)

– Association with inherited genomic variations
Multi-joint involvement predominates in pediatric oncology

- 80% bilateral knees leukemia/lymphoma
 - Karimova et al. AJR:186, 2006
- >50% bilateral ankles cancer
 - Chollet et al. Clin Orthop Rel Res:430, 2005
- 79% bilateral hips leukemia/lymphoma
- 5/33 bilateral hips; 29/33 bilateral knees
ON prevalence in pediatric oncology

- Varies between 1%* and 72%**
 - Symptomatic versus asymptomatic cases
 - Radiographic versus MR-determined
 - Treatment era
 - Definitions used
 - Self- versus imaging-reported

“At-risk” oncology cohorts

Acute lymphoblastic leukemia

Allogeneic bone marrow

Brain tumors
Available imaging modalities

- Radiographs (XR)
- Ultrasound (US)
- Computed tomography (CT)
- Magnetic resonance imaging (MR)
 - Diffusion weighted imaging
 - Perfusion weighted imaging
 - Whole body MR
 - Other innovative sequences
- Nuclear medicine imaging
 - 99mTc-MDP bone scan (BS)
 - 18F-FDG PET/PET-CT imaging (PET or PET-CT)
Standard MR sequences

- Coronal non-contrast T1 and STIR
- Sagittal FLASH 2-D
- When needed to answer a specific question:
 - Contrast-enhanced T1 and subtraction may be helpful
What the oncologist and orthopedic surgeon need to know

- Presence or absence of ON
- Lesion location
 - Epiphysis
 - Extending to articular surface or not
 - Extent of articular surface involved
 - Metaphysis
 - Diaphysis
- Lesion size
- Status of skeletal maturity
- Other findings
Osteonecrosis present or absent?
Presence or absence of ON

- Normal
- Abnormal
 - Mimickers of ON
 - ON-associated findings
 - Unexpected findings
ON-associated inflammatory changes

T1

STIR

FS T1 C+

Subtraction
ON-associated bone marrow edema
ON-associated soft tissue edema
Presence or absence of ON

- Normal
- Abnormal
 - Mimickers of ON
 - ON-associated findings
 - Unexpected findings
Acute recurrent mixed phenotypic leukemia - unexpected
What the oncologist and orthopedic surgeon need to know

- Presence or absence of ON
- Lesion location
 - Epiphysis
 - Extending to articular surface or not
 - Extent of articular surface involved
 - Metaphysis
 - Diaphysis
- Lesion size
- Status of skeletal maturity
- Other findings
Lesion location

Epiphyseal and metaphyseal
Talar dome

Diametaphyseal
What the oncologist and orthopedic surgeon need to know

• Presence or absence of ON
• Lesion location
 – Epiphysis
 • Extending to articular surface or not
 • Extent of articular surface involved
 – Metaphysis
 – Diaphysis
• Lesion size
• Status of skeletal maturity
• Other findings
Lesion size: large lesions progress

Size A (<15% of femoral head), 56 hips
Size B (15-30% of femoral head), 24 hips
Size C (>30% of femoral head), 34 hips

Karimova et al J Clin Oncol 2007 (25) 1525-1531
Implications

Early identification of patients at risk for developing large (> 30%) lesions of hips will allow us to target earlier interventions to the correct patient population, optimizing joint integrity and ameliorating progression of ON.

Karimova et al J Clin Oncol 2007 Apr 20;25(12):1525-31
Utility of early screening magnetic resonance imaging for extensive hip osteonecrosis in pediatric patients treated with glucocorticoids

• 462/498 patients newly diagnosed with acute lymphoblastic leukemia underwent screening MR regardless of presence or absence of symptoms
• MR hips and knees performed at:
 – 6.5 and 9 months from diagnosis (early screening)
 – at completion of chemotherapy (final evaluation)
• Lesions coded as < versus ≥ 30% (extensive) involvement articular surface femoral head

Utility of early screening magnetic resonance imaging for extensive hip osteonecrosis in pediatric patients treated with glucocorticoids

- Extensive asymptomatic osteonecrosis found by early screening:
 - 26 patients (41 hips)
 - another 4 patients (7 hips) after the screening period
 - screening sensitivity 84.1%; specificity 99.4%
- Number of joints screened to detect one lesion was 20.1 for all patients
 - 4.4 for patients older than 10 years
 - 198 for younger patients (p<0.001)
- 19/40 extensive lesions in patients older than 10 yrs, required total hip arthroplasty and none improved.
- 0/8 extensive lesions in younger patients, required arthroplasty and four improved.

Lesion size: large lesions progress

5 y/o girl; protocol-driven prospective MR
Lesion size: large lesions progress

2 years later: collapse of both femoral heads
Lesion size: large lesions progress

5m later

4m later (18 years old)
Lesion size: large lesions progress

3 years later (age 21 years)

5 months later
Same patient: virtually all major joints involved
Progression can be rapid – baseline (asymptomatic)
Progression can be rapid – 5 weeks later (now with pain in knees and ankles)
What the oncologist and orthopedic surgeon need to know

• Presence or absence of ON
• Lesion location
 – Epiphysis
 • Extending to articular surface or not
 • Extent of articular surface involved
 – Metaphysis
 – Diaphysis
• Lesion size
• Status of skeletal maturity
• Other findings
Advanced MR sequences – roles as yet to be defined
Summary: What we know …

Age: only consistently identified risk factor for extensive vs. mild ON
- Increased risk for development and severity

Symptoms: unreliable to detect disease
- Only large lesions reaching articular surface and affecting greater are consistently associated with symptoms
- Symptoms occur late in the progression; limiting options for intervention

Large lesions tend to progress

Many factors contribute to risk of developing ON
Thank you!