What the Pulmonologist Needs From the Radiologist

Jennifer Jean Soares MD
Assistant Professor
Aerodigestive Program Medical Director
Seattle Children’s Hospital Pulmonary and Sleep Medicine Division
Childhood interstitial lung disease (chILD) is a subset of pediatric diffuse lung disease.

- Rare, heterogenous group of lung diseases that affect the airways, alveolar spaces and interstitium.
- Characterized by:
 - Diffuse abnormalities on imaging
 - Impaired gas exchange
- Childhood interstitial lung disease (chILD)
 - Occurs in a variety of clinical contexts including isolated pulmonary disorders, as a consequence of environmental exposures, in the setting of systemic disorders and in the setting of unknown etiology.
- Though some forms are similar, most childhood ILD is markedly different from adult ILD in etiology, treatment and outcome.

Childhood ILD includes a distinct set of diseases only seen in infants.

<table>
<thead>
<tr>
<th>Category</th>
<th>Specific Diagnosis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diffuse Developmental Disorders</td>
<td>Acinar dysplasia, Congenital alveolar dysplasia, Alveolar-capillary dysplasia with pulmonary vein misalignment</td>
</tr>
<tr>
<td>Lung Growth Abnormalities</td>
<td>Pulmonary hypoplasia, Chronic neonatal lung disease (BPD), Associated chromosomal disorders (trisomy 21, others), Associated with congenital heart disease</td>
</tr>
<tr>
<td>Specific conditions of uncertain cause</td>
<td>Neuroendocrine cell hyperplasia of infancy (NEHI), Pulmonary interstitial glycogenosis (PIG)</td>
</tr>
<tr>
<td>Surfactant Dysfunction</td>
<td>SFTPB, SFTPC, ABCA3, NKX2.1/TTF1, Histology consistent with surfactant dysfunction but without recognized genetic cause</td>
</tr>
</tbody>
</table>
The diagnosis of “chILD syndrome” is made when 3 of the following 4 criteria are met.

1. **Respiratory Symptoms**
 - Cough, increased work of breathing at baseline, exercise intolerance

2. **Respiratory Signs**
 - Tachypnea at rest, digital clubbing, crackles, failure to thrive, respiratory failure

3. **Hypoxemia**

4. **Diffuse parenchymal abnormalities on imaging**

Diagnosis of the specific chILD diagnosis allows for optimization of therapies and resources for the patient and their family.

- Systemic steroids
- Steroid sparing therapies
- Chemotherapy/Immunotherapy
- Genetic counseling
- Supportive Care
 - Oxygen
 - Ventilatory support
 - Nutrition
 - Immunizations
 - Control of comorbidities
An individualized stepwise approach is recommended for evaluation of ILD in a child.

- Exclude more common diseases causing similar signs and symptoms
 - Cystic fibrosis, primary ciliary dyskinesia, chronic aspiration, immunodeficiency, cardiac disease
- Computed tomography
 - Inspiratory and expiratory views are essential
- Bronchoscopy with bronchoalveolar lavage
- Genetic testing
- Lung biopsy
Though lung biopsy remains the gold standard for diagnosis of chILD, specific forms of ILD can be diagnosed or suggested without lung biopsy.

- Genetic testing for disorders of surfactant dysfunction
 - SFTPB, SFTPC, ABCA3, NKX2.1/TTF1, GMCSF receptors α and β
- CT findings can be suggestive of certain diseases
 - Surfactant dysfunction disorders
 - Bronchiolitis Obliterans
- CT findings can be specific for certain disorders
 - Neuroendocrine cell hyperplasia of infancy (NEHI)

Brody AS, Guillerman RP et al. Neuroendocrine Cell Hyperplasia of Infancy: Diagnosis with High Resolution CT. Am J Roentgenol 2010; 194:238–244
Computed tomography can define the presence, extent and pattern of disease in a child with ILD and may avoid lung biopsy.

- ILD can be suggested based on the distribution, size and/or quantity of the following findings on CT interpretation:
 - Hyperinflation; vascular attenuation
 - Ground glass opacities
 - Linear, reticular, or nodular densities
 - Peribronchial or septal thickening
 - Bronchiectasis
 - Cystic lesions
 - Other: calcifications, adenopathy, pleural thickening, and pleural fluid

- CT chest can also help determine optimal area for lung biopsy when needed.

A set of identical twins with NEHI.

Ground glass opacities in the right middle lobe, lingula, and perihilar regions, without other abnormalities, demonstrates a pattern consistent with NEHI.

Toddler with Post Infectious Bronchiolitis Obliterans

Presented to pulmonary 1-2 months s/p RSV bronchiolitis infection with tachypnea, retractions, wheeze, hypoxemia and FTT. Chest CT confirmed diagnosis of Bronchiolitis Obliterans Syndrome (BOS).
1 year old child testing positive for SFTPC mutation.

Chest CT of a 1 year old born at term, requiring O2 in the first week of birth with a history of multiple hospitalizations for hypoxemia, tachypnea and baseline respiratory distress in the setting of a family history of pulmonary fibrosis. Genetic sequencing confirmed SFTPC mutation (L181V).
Safe and effective imaging in the evaluation of a child for ILD should include multidisciplinary communication.

- Imaging of infants in the evaluation of ILD may require sedation and controlled ventilation due to their clinical symptoms and the clarity of the images needed.
 - Extreme Tachypnea
 - Need to determine presence of hyperinflation, air trapping, concerns for true abnormalities versus atelectasis/artifact
- Communication between radiologist, anesthesiologist and pulmonologist prior to imaging allows for best imaging outcomes.
References and Suggested Reading

• Brody AS, Guillerman RP et al. Neuroendocrine Cell Hyperplasia of Infancy: Diagnosis with High Resolution CT. Am J Roentgenol 2010; 194:238–244
• Guillerman RP. Imaging of Childhood Interstitial Lung Disease. Pediatric Allergy, Immunology, and Pulmonology; 2010; 23:1: 43-68