SPR 2013 Interventional Session
May 18, 2013
SAM Questionnaire

Renal Artery Denervation for Hypertension
Sam Stuart, FRCR

1. Regarding trans-arterial sympathetic renal denervation

 A. Has been widely used to treat hypertension in children
 B. Is an open surgical technique
 C. Is usually a pain free procedure
 D. Low power radiofrequency ablations are performed
 E. Results in small areas of heat induced damage in the renal parenchyma

Correct Answer: D

References

2. Which one of the following is true regarding the Symplicity HTN-1 trial

 A. Patients were randomized to treatment or non-treatment
 B. All patients responded with a SBP drop of >10mmHg
 C. BP drop in some patients persisted at 24 months
 D. All BP measurements were ambulatory
 E. Patients could not have changed medication post treatment

Correct Answer: C

Reference
3. Which one of the following is true regarding the Symplicity HTN-2 trial?

A. White coat hypertension was strictly excluded
B. Secondary causes of hypertension were strictly excluded
C. Over 100 patients in treatment arm
D. Ambulatory BP measurement at 6m was the primary endpoint
E. No cases of renal artery dissection occurred

Correct Answer: E

References

Advances in Musculoskeletal Intervention
Neil D. Johnson, MBBS and William E. Shiels, DO

4. Regarding aneurysmal bone cysts, which is true?

A. Occur uncommonly in and around the pelvis
B. Is most likely a neoplasm with defined Oncogene Translocations
C. Recurrence rate for traditional open surgical treatment is less than 10%
D. Almost never occur in association with other bone lesions
E. Usually considered as in the same spectrum as Unicameral Bone Cyst

Correct Answer: B

References
5. Regarding Langerhans Cell Histiocytosis (LCH), which is TRUE?

 A. Occurs only in Skull, Long Bones and Lumbar Vertebrae
 B. The specific antigen causing the Langerhans Cell proliferation has recently been identified
 C. LCH lesions, including solitary bone lesions always require chemotherapy
 D. Approximately 70-80% of all childhood LCH presents as bone lesions, often solitary
 E. Is a form of leukemia

Correct Answer: D

References

Intravascular Ultrasound and Optical Coherence Tomography
Clare A. McLaren, DCR(R)

6. Regarding the use of intravascular ultrasound (IVUS) in arteries:

 A. A transducer frequency of 10 to 15 MHz is usually used
 B. IVUS requires the use of a 6 Fr or larger arterial sheath
 C. IVUS provides poor information on arterial wall thickness
 D. IVUS can currently be used in children who weigh <15 kg
 E. It is necessary to clear the artery of blood during image acquisition

Correct Answer: C

References
7. **Optical coherence tomography:**

A. Is better than IVUS for the detection of poor stent-wall apposition in renal arteries.
B. Is not as good as IVUS for detection of neointimal hyperplasia in coronary artery stents than OCT.
C. OCT uses near ultraviolet light to create images.
D. A guiding catheter is not required when performing arterial OCT.
E. Cannot be used in the ureter.

Correct Answer: A

References

Vein of Galen Malformations

David J.E. Lord, MD, FRANZCR

8. **Regarding the cause of hydrocephalus in neonates with a vein of Galen aneurysmal malformation, which is true?**

A. Pressure on the aqueduct of Silvius by the dilated vein
B. Increased flow to the choroid from the posterior choroidal arteries
C. Venous hypertension and hydrovenous disease
D. Aqueduct ischemia
E. Intraventricular hemorrhage

Correct Answer: C

References

9. Regarding embolization in vein of Galen aneurysmal malformation, which of the following is true?
 A. N Butyl cyanoacrylate is contraindicated as an embolic agent
 B. All affected children should have a trial of embolization
 C. Embolisation should only be attempted after ventricular shunting
 D. Coil embolization of the venous sac is the preferred approach
 E. Transarterial embolization offers the greatest chance of cure

Correct Answer: E

References

Vascular Malformation Syndromes
Ahmad I. Alomari, MD

10. Which one of the following is not seen in patients with CLOVES syndrome?
 A. Truncal fatty overgrowth
 B. Scoliosis
 C. Complex paraspinal overgrowth with vascular anomalies
 D. Marginal venous system
 E. Connective tissue nevus.

Correct Answer: E

11. Klippel-Trenaunay syndrome and Parkes Weber syndrome share one of these common features:
 A. Hypervascularity
 B. Bilateral distribution
 C. Lower limb involvement
 D. Marginal venous system
 E. Large AV fistulas

Correct Answer: C
References

Interventional Case Club

John M. Racadio, MD

CASE: Combined trans-arterial and percutaneous approach for pre-operative management of Giant Cell Reparative Granuloma

12. What is the diagnosis of an expansile, lytic and multicystic lesion in the mandible based on imaging?

A. Aneurysmal bone cyst
B. Ameloblastoma
C. Giant cell reparative granuloma
D. Odontogenic cyst
E. Cannot differentiate between all the above

Correct Answer: E

13. Would you do pre-operative embolization and how would you do it?

A. No pre-op embolization
B. Trans-arterial embolization
C. Percutaneous embolization
D. Combined trans-arterial and percutaneous embolization.

Correct Answer: D

References

CASE: Transrectal Abscess Drainage and Adjunct tPA

14. What is true regarding intra-cavitary tPA as abscess drainage adjuvant?

A. There is a high increased risk of bleeding.
B. tPA may have no substantial systemic effects because it has a high molecular weight and is slowly released from the peritoneal cavity.
C. A high dose of tPA is instilled for intra-cavitary treatment of abscess refractory to drainage.
D. Intra-cavitary tPA can not be used in patients receiving systemic anticoagulation.

Correct Answer: B

References

CASE: Renal Artery Stenosis

15. Renal artery stenosis in children without systemic disorders is most common in:

A. Main renal artery
B. 2nd or 3rd order renal vessels
C. None of the above
D. Aorta

Correct Answer: B
Reference
1. Pediatric Radiology October 2006, Volume 36, Issue 10, pp 1032-1036; Anatomic
distribution of renal artery stenosis in children: implications for imaging; Nghia J.
Vo, Ben D. Hammelman, Judy M. Racadio, C. Frederic Strife, Neil D. Johnson, John M.
Racadio