Neonatal Vascular Anomalies:
Evaluation

Harriet J. Paltiel, MD
Boston Children’s Hospital
Harvard Medical School

Objectives
- Most vascular anomalies involve the skin and are noted at birth
- Review classification of vascular anomalies
- Discuss diagnostic imaging features of some of the most important vascular anomalies presenting in the prenatal and neonatal periods

Vascular Anomalies: ISSVA Classification
- Vascular tumors
 - characterized by endothelial hyperplasia
 - hemangiomas
 - less common tumors
- Vascular malformations
 - characterized by vascular dysmorphogenesis
 - normal endothelial cell turnover

Infantile Hemangioma
- Most common tumor of infancy
- Perinatal incidence of 1-2.6%
 - approximately 4% of all Caucasian infants affected in first year of life
 - lower incidence in dark-skinned infants
- Female-to-male ratio of 3:1 to 5:1
- Increased incidence in preterm infants weighing < 1000 gm (up to 30%)
- No clear genetic predisposition
- Risk factors
 - advanced maternal age, placental abnormalities, multiple gestations

Infantile Hemangioma
- 30-50% present at birth
- Cutaneous lesions permeate dermis
 - skin raised, bosselated, crimson in color
- Deeper lesions in lower dermis, subcutis or muscle
 - often present as raised, bluish lesions with indistinct margins at 2-3 months of age or later

Relevant Financial Relationships
- I have no disclosures to make
Infantile Hemangioma

- Located in head and neck (60%), trunk (25%), and extremities (15%)
- Increased risk of complications and need for treatment correlated with size
- About 80% solitary
- Infants with multifocal lesions more likely to have GI tract involvement
 - bleeding and anemia
- >5 lesions associated with increased risk of hepatic hemangioma
 - presentation 1-16 weeks postnatally with hepatomegaly, CHF, anemia or asymptomatic masses

Infantile Hemangioma: Clinical Course

- Proliferative phase
 - rapid growth during first 6-12 months of life
- Involuting phase
 - slow regression over 1-7 years
 - endothelial matrix replaced by loose fibrous or fibrofatty tissue
- Involuting phase
 - near-normal skin in about 50% of patients
 - telangiectasia, laxity, yellowish discoloration, scarring in remainder

Congenital Hemangioma

- Uncommon
- Evolves in utero
- Fully grown at birth
- Detected prenatally as early as 12th week of gestation
- Usually solitary
- GLUT1-negative
- Two types based on postnatal behavior
 - RICH (rapidly involuting congenital hemangioma)
 - NICH (non-involuting congenital hemangioma)

Hepatic Hemangioma

- Focal, multifocal, diffuse
- Focal lesions are the hepatic equivalent of cutaneous RICH
 - equal sex distribution, associated cutaneous infantile hemangiomas rare, GLUT1 negative
 - involute over 10-23 months
- Multifocal and diffuse lesions are true infantile hemangiomas
 - female predominance, associated cutaneous infantile hemangiomas common, GLUT1-positive
 - rapid postnatal growth and slow involution over 1-5 years

Associated Malformative Anomalies

- PHACES syndrome
 - P: Posterior fossa and other structural brain anomalies
 - H: Hemangiomas of cervicofacial region
 - A: Arterial cerebrovascular anomalies
 - C: Cardiac defects, aortic coarctation and other aortic abnormalities
 - E: Eye anomalies
 - S: Sternal defects and/or Supraventricular raphe
- Risk for stroke
 - MRI to assess brain and cerebral vasculature
- Ophthalmologic, endocrine and cardiac evaluation to rule out associated anomalies

Associated Malformative Anomalies

- Lumbosacral hemangiomas and occult spinal dysraphism
 - e.g. tethered cord, lipomeningocele
- Pelvic and perineal hemangiomas
 - urogenital and anorectal anomalies
Treatment

• Most hemangiomas small and regress without treatment
• Referral to specialty center in event of equivocal diagnosis, dangerous location, large size, rapidity of growth or potential for other complications
 – skin ulceration
 – CHF, hypothyroidism, abdominal compartment syndrome with hepatic hemangiomas

Kaposiform Hemangioendothelioma

• 60% present in neonatal period and 93% in infancy
• Unifocal
• Enlarging cutaneous lesion (75%), thrombocytopenia (56%), musculoskeletal pain or decreased function (23%)
• Affects trunk, shoulder, thigh or retroperitoneum
• Spectrum of clinical behavior and pathological findings
 – locally aggressive
 – slow-growing, benign (“Tufted angioma”)

Vascular Malformations

• Localized or diffuse errors of embryonic development
• Affect about 1.2-1.5% of the population
• Most sporadic; some are inherited
• Affect any segment of the vascular tree
 – arterial, capillary, venous and lymphatic vessels
• Categorized according to predominant channel abnormality and flow characteristics
 – Slow-flow anomalies
 – CMs, VMs, LMs
 – Fast-flow anomalies
 – AVMs, AVFs
• Complex, combined vascular malformations
• No spontaneous regression

Venous Malformations

• Most common vascular anomaly
 – incidence of 1-2/10,000 births and 1% prevalence
 – occur throughout the body
 – head and neck (40%), extremities (40%), trunk (20%)
 – 95% sporadic
 – TIE2 mutation in some hereditary cutaneomucosal malformations
• Glomovenous malformation most common
• Most are solitary
 – range from small, superficial and well-circumscribed lesions to large infiltrating lesions involving multiple soft-tissue planes
• Usually isolated lesion; some associated with syndromes

Lymphatic Malformations

• Localized or diffuse
• Dilated channels filled with proteinaceous fluid
• Generally not connected to normal lymphatic system
• Macrocystic (>1 cm), microcystic (< 1 cm) or combined
• Diagnosed prenatally, at birth or in early childhood
• Occur in head and neck (48%), trunk and extremities (42%), intrathoracic or intra-abdominal viscera (10%)
• Grow with child
• May enlarge rapidly after hemorrhage or infection

Arteriovenous Malformations

• Direct communication between dysplastic arteries and veins without intervening capillary bed
 – the shunt is the nidus of the AVM
 – high flow physiology
• Most are sporadic
• Heritable forms have been identified
• About 40% identified at birth
 – behavior unpredictable
 – usually dormant in infancy and childhood and enlarge during adolescence or following trauma or surgery
• Mass effect, soft tissue destruction, bone erosion
Complex Combined Malformations

- Klippel-Trenaunay syndrome
 - may be due to somatic mutations in the PIK3CA gene
 - CLVM with soft-tissue and skeletal hypertrophy of limb(s) and/or trunk
- CLOVES syndrome
 - somatic mutations in PIK3CA gene
 - congenital lipomatous overgrowth, vascular malformations, epidermal nevi, scoliosis/skeletal and spinal anomalies
- Parkes Weber syndrome (PWS)
 - sporadic or inherited
 - large cutaneous CMs on extremity, multiple micro-AVFs and limb overgrowth

Complex Combined Malformations

- CM-AVM
 - Germline mutations in RASA1 gene
 - CMs and high flow lesions (AVMs, AV fistulas, PWS)

Summary

- Reviewed classification of vascular anomalies
- Discussed some of most important lesions presenting in prenatal and neonatal periods
- Demonstrated critical role of imaging in the diagnosis of these abnormalities