MDCT Evaluation of PE in Children

What is New?

Edward Y. Lee, MD, MPH
Chief, Division of Thoracic Imaging
Director, Magnetic Resonance Imaging
Associate Professor of Radiology

Boston Children’s Hospital and Harvard Medical School
Introduction

- Pulmonary embolism (PE) is a potentially life-threatening condition
 - Tapson VF. Acute PE. NEMJ. 2008

- Historically, the incidence (0.73 – 4.2%) of PE has been believed to be low

- Recent studies showed much higher incidence (14 – 15%) of PE in children
Objectives

- Discuss up-to-date information on PE in children

- Review currently available imaging modalities & techniques
 - MDCT parameters
 - Post-processing techniques
 - 2D imaging
 - 3D imaging (MIP)

- Provide practical recommendations on imaging management of PE in children
Three Key Facts about PE in Children

- The incidence of PE in children is much less than in adults

- Protective mechanisms:
 - Reduced capacity to generate thrombin
 - Increased capacity of alpha-2 macroglobulin to inhibit thrombin
 - Enhanced antithrombotic potential by the vessel wall
Three Key Facts about PE in Children

- Neonates & infants are at greatest risk of childhood thrombosis

- Risk factors:
 - Peripartum asphyxia
 - Dehydration
 - Septicemia
 - Trauma / surgery
 - Central venous lines

Three Key Facts about PE in Children

• Idiopathic PE occurs uncommonly in children
 - ~4% in children vs. ~30% in adults

• Most PE occurs in association with underlying risk factors
 - Interrelated & multiple risk factors

Lee EY, et al. Unsuspected PE in Pediatric Oncology Patients: Detection with MDCT. AJR 2010
Next: Ingredients for a Proper DX of PE

Clinical Findings

Laboratory Tests

Imaging Evaluation

Clinical Evaluation for PE

• Variable Clinical Presentation
 – Chest pain (70%)
 – Tachypnea (70%)
 – Cough (40%)
 – Tachycardia (33%)
 – SOB (25%)
 – Pulmonary HTN (5%)

EKG & Laboratory Tests

- **EKG Findings**
 - Sinus tachycardia
 - ST-T segment changes
 - Right axis deviation & bundle branch block

- **Blood Findings**
 - Hypocapnia
 - Hypoxemia with a-ACO2 gradient
Evaluation of PE in Children: Imaging Evaluation

- No published studies documenting the sensitivity & specificity
 - Clinical evaluation
 - Diagnostic imaging tests

- Imaging protocols have been usually extrapolated from adult studies
 - Little justification
 - Lack of applicability
Currently Available Imaging Studies

<table>
<thead>
<tr>
<th>Study</th>
<th>Advantages</th>
<th>Disadvantages</th>
</tr>
</thead>
<tbody>
<tr>
<td>CXR</td>
<td>Easy to perform, Relatively cheap, Fast</td>
<td>Not sensitive, Not specific</td>
</tr>
<tr>
<td>V/Q Scan</td>
<td>Low radiation, No IV contrast, High spec/prob</td>
<td>Lung Dz, Interm. prob, Long (~45 min)</td>
</tr>
<tr>
<td>CTPA</td>
<td>High Sen / Spec, Fast, R/O other Dx</td>
<td>Radiation, IV contrast</td>
</tr>
<tr>
<td>Angio</td>
<td>Gold Standard, Embolectomy</td>
<td>Invasive, + Radiation, Long</td>
</tr>
</tbody>
</table>
What Are We Currently Doing for PE Evaluation in Children?

- Survey of PE Evaluation in Children
 - To determine the current policies & practices of SPR members
 - Survey sent electronically to the 1575 members (416 institutions) of the SPR
Pulmonary Embolism in Children: Survey Items

- Existence of written policies
- Imaging study of choice
- Currently used CTPA techniques
- Modifications of protocols for radiation dose reduction

Original Investigation

Pulmonary Embolism in Pediatric Patients:

Survey of CT Pulmonary Angiography Practices and Policies

Edward Y. Lee, MD, MPH, David Zurakowski, PhD, Phillip M. Boiselle, MD
Results

- 28% (118/416) response rate on an institutional basis
- Written policy only in 25% institutions
- CXR performed before CTPA (64%)
- CTPA = imaging modality of choice (89%)

<table>
<thead>
<tr>
<th>Technical Parameters</th>
<th>Response Categories</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amount of IV contrast</td>
<td>Don't know</td>
</tr>
<tr>
<td>2 mL/kg</td>
<td>1.0 mL/kg</td>
</tr>
<tr>
<td>(68; 65%)</td>
<td>(7; 7%)</td>
</tr>
<tr>
<td>1.5 mL/kg</td>
<td>3.0 mL/kg</td>
</tr>
<tr>
<td>(12; 12%)</td>
<td>(5; 5%)</td>
</tr>
<tr>
<td>Methods of IV contrast administration</td>
<td>2.5 mL/kg</td>
</tr>
<tr>
<td>Mechanical injection</td>
<td>Hand injection</td>
</tr>
<tr>
<td>(58; 56%)</td>
<td>(3; 3%)</td>
</tr>
<tr>
<td>Timing of CTPA scan initiation</td>
<td>Fixed time method</td>
</tr>
<tr>
<td>Tailored bolus tracking method</td>
<td>Don't know</td>
</tr>
<tr>
<td>(80; 77%)</td>
<td>(22; 21%)</td>
</tr>
<tr>
<td></td>
<td>Dependents on the size of the IV catheter</td>
</tr>
<tr>
<td></td>
<td>(43; 41%)</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Results: Radiation Dose Reduction

- 60 Respondents (58%) modify CTPA imaging protocols

Acad Rad. 2010
MDCT Imaging Techniques: CTPA

- Sedation / Intubation
 - Usually < 5 years old
 - Conscious sedation
 - Sedative medications
 - Oral chloral hydrate
 - IV Pentobarbital sodium
 - Adequate cardiorespiratory support

Imaging Techniques:

CTPA Parameters

- 64 MDCT
- Detector thickness = 0.6 mm
- kVp
 - 80 kVp for infants (up to 1 year of age)
 - 100 kVp for children (up to 4 years of age / 40 kg)
 - 120 kVp for older children
- mAs (using dose modulated tube current)
- Rotation time = 0.33 sec. (0.5 sec for 2nd phase)
- Pitch = 0.2 (0.55 for 2nd phase)
- Slice thickness = 1 mm (1.5 mm for 2nd phase)
- Scan in caudal to cranial direction

MDCT Techniques:
Optimizing Contrast Opacification

- Contrast dose = 1.5 cc/kg (Isovue 370)
- Contrast injection rate depends on size & stability of IV catheter
- Suggested injection rates

<table>
<thead>
<tr>
<th>Catheter Size (gauge)</th>
<th>Injection Rate (mL/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>24</td>
<td>1 – 1.5 (by hand)</td>
</tr>
<tr>
<td>22</td>
<td>2.0 – 2.5</td>
</tr>
<tr>
<td>20</td>
<td>3.0 – 4.0</td>
</tr>
<tr>
<td>18</td>
<td>4.0 – 5.0</td>
</tr>
</tbody>
</table>
MDCT Technique:
Scan Analysis & Post-processing

• MPR (Multiplanar)
 – Coronal & sagittal reformats

• 3D Volume Rendered Reconstructions
 – Maximum Intensity Projection (MIP) images

• Are these post-processed CT images helpful?
CTPA: Value of MPR Reformatted Images in Detecting PE in Children

Results

TABLE 1: Comparison of Axial and Multiplanar Reformatted MDCT of Suspected Pulmonary Embolism in Children

<table>
<thead>
<tr>
<th>Reviewer No.</th>
<th>Experience</th>
<th>Axial MDCT</th>
<th>Multiplanar Reformatted MDCT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Diagnostic Accuracy (%)</td>
<td>Confidence Level</td>
</tr>
<tr>
<td>1</td>
<td>Faculty pediatric radiologist</td>
<td>96.7</td>
<td>4.3</td>
</tr>
<tr>
<td>2</td>
<td>Faculty pediatric radiologist</td>
<td>98.3</td>
<td>4.2</td>
</tr>
<tr>
<td>3</td>
<td>Radiology resident</td>
<td>93.3</td>
<td>2.9</td>
</tr>
<tr>
<td>4</td>
<td>Radiology resident</td>
<td>91.7</td>
<td>3.2</td>
</tr>
</tbody>
</table>
Results

Case 1

16-year-old boy with sudden onset of SOB and right chest pain
17-year-old girl with left arm swelling for 2 days, sudden SOB & history of oral contraceptive use
Next: CT Imaging Findings in Children with PE
Imaging Findings: Location of PE

Lobar Distribution of Pulmonary Emboli
- Total number of emboli = 33

Pulmonary Artery Location of Pulmonary Emboli
- Total number of emboli = 31

<table>
<thead>
<tr>
<th>Pleuroparenchymal findings</th>
<th>With PE (N=22)</th>
<th>Without PE (N=22)</th>
<th>Odds ratio</th>
<th>95% CI</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wedge-shaped peripheral consolidation</td>
<td>8 (36)</td>
<td>2 (9)</td>
<td>5.7</td>
<td>1.1–31.1</td>
<td>0.03a</td>
</tr>
<tr>
<td>Other forms of consolidation</td>
<td>3 (14)</td>
<td>4 (3)</td>
<td>3.3</td>
<td>0.5–34.7</td>
<td>0.26</td>
</tr>
<tr>
<td>Atelectasis</td>
<td>10 (46)</td>
<td>5 (23)</td>
<td>2.8</td>
<td>0.8–10.4</td>
<td>0.11</td>
</tr>
<tr>
<td>Linear opacity</td>
<td>1 (5)</td>
<td>0 (0)</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Ground-glass opacity</td>
<td>6 (27)</td>
<td>5 (23)</td>
<td>1.3</td>
<td>0.3–5.0</td>
<td>0.73</td>
</tr>
<tr>
<td>Mosaic attenuation pattern</td>
<td>0 (0)</td>
<td>0 (0)</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Nodule</td>
<td>2 (9)</td>
<td>2 (9)</td>
<td>1.0</td>
<td>0.1–7.8</td>
<td>0.99</td>
</tr>
<tr>
<td>Mass</td>
<td>0 (0)</td>
<td>0 (0)</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Focal patchy increased attenuation</td>
<td>0 (0)</td>
<td>0 (0)</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Pleural effusion</td>
<td>5 (23)</td>
<td>4 (18)</td>
<td>1.3</td>
<td>0.3–5.8</td>
<td>0.71</td>
</tr>
</tbody>
</table>
Parenchymal Findings in PE:
Wedge-shaped Peripheral Opacity
Parenchymal Findings in PE:

Wedge-shaped Peripheral Opacity
Beyond the Pulmonary Arteries: Alternative Diagnoses

CTPA in children with clinically suspected PE (N = 123)

Normal CTPA (N=39) 32%

Alternative Diagnosis (N=57) 48%

Non-Diagnostic CTPA (N=6)

PE (N=21) 17%

Alternative Diagnoses (N = 57)

- Pneumonia
- Atelectasis
- Malignancy
- Cardiac disease
- Pulmonary hypertension
- Pleural effusion
- Pulmonary nodules
- Rib fractures
- Right atrial thrombus
- Fat embolism
Pneumonia

15-year-old girl with SOB and left sided pleuritic chest pain
Atelectasis

3-year-old girl with SOB / increased oxygen requirement status post left hemispherectomy for refractory seizure disorder
Lung CA

14-year-old girl with SOB and de-saturation
Right Atrial Thrombosis

18-year-old girl with factor V Leiden mutation with de-saturation and chest pain
Overutilization of CTPA in Children?

- Recent studies showed increasing use of CTPA in children suspected of having PE

- But, the rate of positive studies is relatively low, suggesting overutilization of this test

- Thromboembolic risk factor assessment was shown to be useful for directing when to perform CTPA in a recent study in adult patients

Thromboembolic Risk Factors & Implications for Appropriate Use

- To evaluate thromboembolic risk factors for PE detected by using CTPA in children
- To determine whether such information may guide more appropriate use of CTPA
The investigators systematically reviewed:

- **Patient demographics**
 - Age, gender, in/out patient status

- **7 thromboembolic risk factors**
 - Immobilization, malignancy, hypercoagulable state, excess estrogen state, indwelling CVL, underlying cardiac disease & prior history of PE and/or DVT

- **D-dimer assessment**

- **Clinical outcome**
 - Length of follow-up & any complications related to PE

Comparison in Pts with & without PE

<table>
<thead>
<tr>
<th>Variable</th>
<th>Patients with PE ($n = 36$)</th>
<th>Patients without PE ($n = 191$)</th>
<th>P Value*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (y)</td>
<td>13.6 ± 5.4</td>
<td>14.1 ± 4.0</td>
<td>.529</td>
</tr>
<tr>
<td>Sex</td>
<td></td>
<td></td>
<td>.623</td>
</tr>
<tr>
<td>Male</td>
<td>18 (50)</td>
<td>87 (46)</td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>18 (50)</td>
<td>104 (54)</td>
<td></td>
</tr>
<tr>
<td>Clinical signs and symptoms</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tachycardia</td>
<td>22 (61)</td>
<td>101 (53)</td>
<td>.466</td>
</tr>
<tr>
<td>Pleuritic chest pain</td>
<td>15 (42)</td>
<td>104 (54)</td>
<td>.203</td>
</tr>
<tr>
<td>Shortness of breath</td>
<td>17 (47)</td>
<td>96 (50)</td>
<td>.856</td>
</tr>
<tr>
<td>Increased oxygen requirement</td>
<td>9 (25)</td>
<td>48 (25)</td>
<td>.987</td>
</tr>
<tr>
<td>Pulmonary hypertension</td>
<td>7 (19)</td>
<td>7 (4)</td>
<td>.999</td>
</tr>
<tr>
<td>Hemoptysis</td>
<td>0</td>
<td>3 (2)</td>
<td>.999</td>
</tr>
<tr>
<td>Referral setting</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inpatient</td>
<td>33 (92)</td>
<td>43 (23)</td>
<td><.0001</td>
</tr>
<tr>
<td>Outpatient</td>
<td>3 (30)</td>
<td>98 (50)</td>
<td></td>
</tr>
<tr>
<td>Emergency Department</td>
<td>1 (3)</td>
<td>80 (42)</td>
<td></td>
</tr>
<tr>
<td>Multidetector CT scanner</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16 Detector row</td>
<td>7 (19)</td>
<td>42 (22)</td>
<td>.457</td>
</tr>
<tr>
<td>32 Detector row</td>
<td>7 (19)</td>
<td>53 (28)</td>
<td></td>
</tr>
<tr>
<td>64 Detector row</td>
<td>22 (62)</td>
<td>96 (50)</td>
<td></td>
</tr>
<tr>
<td>Risk factors</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Immobilization</td>
<td>27 (75)</td>
<td>10 (5)</td>
<td><.0001</td>
</tr>
<tr>
<td>Indwelling CVL</td>
<td>20 (56)</td>
<td>24 (13)</td>
<td><.0001</td>
</tr>
<tr>
<td>Prior PE and/or DVT</td>
<td>16 (44)</td>
<td>22 (12)</td>
<td><.0001</td>
</tr>
<tr>
<td>Hypercoagulable state</td>
<td>8 (22)</td>
<td>13 (7)</td>
<td>.003</td>
</tr>
<tr>
<td>Excess estrogen state</td>
<td>8 (22)</td>
<td>12 (6)</td>
<td>.002</td>
</tr>
<tr>
<td>Malignancy</td>
<td>9 (23)</td>
<td>52 (17)</td>
<td>.249</td>
</tr>
<tr>
<td>Cardiac disease</td>
<td>3 (8)</td>
<td>18 (9)</td>
<td>.998</td>
</tr>
</tbody>
</table>
Comparison of Five Statistically Significant Risk Factors b/n Pts with & without PE

- Immobilization: 75% in PE, 5% in No PE
- Indwelling CVL: 56% in PE vs. 13% in No PE
- Prior PE and/or DVT: 44% in PE vs. 12% in No PE
- Hypercoagulable State: 22% in PE vs. 7% in No PE
- Excess Estrogen State: 22% in PE vs. 6% in No PE
Number of Risk Factors in Patients with & without PE

Percentage of Patients

- PE (N = 36)
 - None: 5%
 - Any 1: 5%
 - Any 2: 56%
 - 3 or More: 34%

- No PE (N = 191)
 - None: 31%
 - Any 1: 6%
 - Any 2: 0%

Number of Risk Factors

- None
- Any 1
- Any 2
- 3 or More
ROC Curve for Differentiating Pts with PE from Those without PE

Sensitivity = 89%
Specificity = 94%
Simplified Algorithm of Number of Risk Factors & Probability of PE

<table>
<thead>
<tr>
<th>No. of Risk Factors*</th>
<th>Probability of PE (%)</th>
<th>95% CI (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>0.5</td>
<td>0.1, 2</td>
</tr>
<tr>
<td>Any one</td>
<td>8</td>
<td>5, 15</td>
</tr>
<tr>
<td>Any two</td>
<td>62</td>
<td>46, 76</td>
</tr>
<tr>
<td>Any three or more</td>
<td>89</td>
<td>87, 99</td>
</tr>
</tbody>
</table>

Risk Factor Assessment for PE: Older Children & Young Adult

TABLE 2: Comparison of Patients With and Without Pulmonary Embolism (PE)

<table>
<thead>
<tr>
<th>Variable</th>
<th>With PE ($n=16$)</th>
<th>Without PE ($n=100$)</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (y), mean ± SD</td>
<td>20.4 ± 1.5</td>
<td>20.8 ± 1.9</td>
<td>0.40</td>
</tr>
<tr>
<td>Sex</td>
<td></td>
<td></td>
<td>0.56</td>
</tr>
<tr>
<td>Male</td>
<td>6 (38)</td>
<td>28 (28)</td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>10 (62)</td>
<td>72 (72)</td>
<td></td>
</tr>
<tr>
<td>MDCT scanner</td>
<td></td>
<td></td>
<td>0.66</td>
</tr>
<tr>
<td>16</td>
<td>5 (31)</td>
<td>24 (24)</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>3 (19)</td>
<td>27 (27)</td>
<td></td>
</tr>
<tr>
<td>64</td>
<td>8 (50)</td>
<td>49 (49)</td>
<td></td>
</tr>
<tr>
<td>Immobilization</td>
<td>13 (81)</td>
<td>14 (14)</td>
<td><0.0001*</td>
</tr>
<tr>
<td>History of PE or deep venous thrombosis</td>
<td>8 (50)</td>
<td>22 (22)</td>
<td>0.029*</td>
</tr>
<tr>
<td>Cardiac disease</td>
<td>6 (38)</td>
<td>7 (7)</td>
<td>0.003*</td>
</tr>
<tr>
<td>Malignancy</td>
<td>4 (25)</td>
<td>14 (14)</td>
<td>0.27</td>
</tr>
<tr>
<td>Hypercoagulable state</td>
<td>3 (19)</td>
<td>5 (5)</td>
<td>0.08</td>
</tr>
<tr>
<td>Excess estrogen state</td>
<td>2 (13)</td>
<td>20 (20)</td>
<td>0.73</td>
</tr>
<tr>
<td>Central venous line placement</td>
<td>2 (13)</td>
<td>2 (2)</td>
<td>0.09</td>
</tr>
</tbody>
</table>

Lee EY, et al. PE Detected by CTPA in Older Children & Young Adults: Risk Factor Assessment. AJR. 2012
Take Home Points

• Diagnosis of PE is not easily done clinically, even with the help of biochemical tests

• Failure to be diagnosed in the greatest threat to patients with PE

• Utilization of CTPA are helpful in diagnosis
 – Presence of PE
 – Associated lung findings
 – Alternative diagnoses
Take Home Points

• Important to know **proper CTPA techniques**
 - Contrast optimization
 - Radiation dose reduction techniques

• **Use of MPR MDCT images significantly increases** confidence level & interobserver agreement among radiologists

• **Use of risk factor assessment** as a first-line triage tool has the potential to guide more appropriate use of CTPA in children
 - Reductions in radiation exposure & costs