MRI of the Preterm Infant

Beth M. Kline-Fath, MD
Associate Professor of Radiology
Chief of Fetal Imaging
Department of Neuroradiology
Cincinnati Children’s Hospital Medical Center
Preterm Brain Imaging

- Imaging modalities
- Conventional sequences
- Normal brain
- Preterm injury
 - Germinal matrix
 - White matter
 - Severe
Imaging

- **US**
 - Unstable
 - MRI not available
 - Excellent
 - GMH
 - Hydrocephalus
 - Vascular
 - Limited
 - Small FOV
 - Differentiation ischemia/hemorrhage
 - Noncavitary
 - Cerebellum
 - Brainstem

- **MRI**
 - Gold standard
 - High soft tissue contrast
 - New modalities
 - Diffusion
 - Spectroscopy
Neonatal Imaging: MRI Difficulties

- Stability of neonate
 - Personnel
 - Monitoring
 - Thermoregulation
 - Instability
- Time
 - Preparation
 - Complex schedule
 - Transportation
 - Infection exposure
- Sedation
 - Time
 - Risk
- MRI safety
 - Contraindications
 - Acoustic noise
- Imaging
 - MRI compatible incubator
 - Adult size
 - Coils
 - High cost
What do some people think of Cincinnati?

- "When the end of the world comes, I want to be in Cincinnati because it's always twenty years behind the times."

- But....not when it comes to neonatal imaging....

Mark Twain
NICU MRI

- **Size**
 - Comfortable fit in MRI (< 4.5kg)

- **Safety**
 - Prescreening
 - Prepare at bedside
 - Transfer in prescan room
 - metal detector wand

- **No sedation**
 - **Why**
 - Neuronal cell death
 - Increased bradycardia
 - **How**
 - Feed prior MR
 - Swaddle

- **Tailor imaging**
 - Quietest sequences first
 - Dim room lights

Scanning Babies
Conventional Neonate MR

- Sag T1
 - 3D SPGR
 - FLAIR
- Axial FSE PD/T2
- Axial T1 (IR)
- Cor/Sag T2
- Gradient echo
 - SWAN
 - MPGR
- DTI/DWI

- +/- MRS
- +/- ASL
- +/- MRA
- +/- MRV
- +/- Post Gadolinium

FLAIR poor due to high water content of neonatal brain

Imaging for pathology best after 1-2 wk
Normal Preterm MRI

- Germinal matrix (low T2, high T1)
 - Roof temporal horns
 - Lateral wall occipital
 - Caudothalamaic
 - Frontal periventricular (olfactory)

- White matter little myelination
 - Low T1 and high T2
 - 20-30 w
 - Band low T2/high T2 – migrating cells
 - Crossroads-high T2 signal by frontal horns (36 w)
Normal Preterm Brain

- Sulcation
 - Dependent age
 - >30 w many
 - Shallow → deep

- Myelination
 - 20-32 w- medulla to midbrain
 - 29 w superior & inferior cerebellar peduncles
 - 32 w- inferior colliculus, lateral putamen, ventrolateral thalamus
 - 36-40 w - posterior limb internal capsule, corona radiata, perirolandic, vermis, calcarine, medial temporal
Brain 32 weeks
Important Facts

- **Spectroscopy**
 - Varies
 - Maturity
 - Location
 - Lactate (CSF)
 - Preterm/term contain lactate
 - Solvent for phenobarbital 1.15 ppm

- **Diffusion**
 - False neg/underestimate
 - <24 h
 - Pseudonormalize
 - 6 day
Factors that affect Preterm Hypoperfusion Injury

- Physiologic
 - Lack of autoregulation
 - Instability of cardiovascular system

- Duration/severity of hypotension
 - Mild - moderate
 - Severe

- Maturity of brain
 - Glial response 6-7 months gestation
Preterm Hypoperfusion

- 11% live births = infants <32 w
 - >85% survival

- High neurodevelopmental delays
 - 9% cerebral palsy or severe impairment
 - 40-50% neurologic disability

Larroque B et al, Lancet 2008
Preterm HIE

- Mild-moderate
 - Germinal matrix hemorrhage (GMH)
 - Intraventricular hemorrhage (IVH)
 - Periventricular hemorrhagic infarction (PVHII)
 - Cerebellar hemorrhage/ischemia
 - White matter disease of premature (periventricular leukomalacia-PVL)
Germinal Matrix

- Cerebral
 - VZ/SVZ
- Cerebellar
 - External granular layer
- Hemorrhage
 - Vascular thin walled vessels
 - Sensitive oxygen/blood flow
 - Hypoperfused/reperfused
 - Increased venous pressure
Germinal Matrix Hemorrhage

- Incidence 10-25%

- Greatest risk
 - < 30 w/ 1500 g

- Timing
 - Day 1 - 50%
 - Day 2 - 25%
 - Day 3/4 - 15%
 - Rare beyond 1 w
Germinal Matrix Hemorrhage

- Burstein and Papile
 - Grade I: Subependymal hemorrhage
 - Grade II: Intraventricular without hydrocephalus
 - Grade III: Intraventricular with hydrocephalus
 - Grade IV: Periventricular hemorrhagic infaction (PVHI) with or without hydrocephalus

- Hydrocephalus
 - 36% with GR III
 - Arrest or resolve 65-75%
 - Shunt 10%
GMH/IVH MRI Findings

- <3 days
 - Hypointense T1
 - Mark hypo on T2/T2*
- 3-7 days
 - Hyper T1
 - Hypo T2/T2*
- 7 days to months
 - Hypo to CSF T1
 - Hyper to CSF T2
GM – SWAN (susceptibility-weighted images)
PVHI or Grade IV

- 15% with IVH
- Injury to periventricular white matter
 - Hemorrhagic venous infarction
 - Occlusion of vein along ventricular wall (terminal vein)
- MR
 - Hemorrhage surrounded T2 hyperintense
 - Late porencephaly
MRI Grade III and PVHI, day 15
34 w MRI 5 days
GMH/IVH/PVHI

- Neurologic deficits
 - Cognitive
 - Motor (hemiparesis)
 - GMH with normal ventricles < 10%
 - IVH and large ventricles 50%
 - PVHI 50-90%

Volpe IJ. Neurology of the Newborn, 2008
Cerebellar GM Hemorrhage

- 15-25% < 32 w
- Location
 - Isolated 23%
 - Unilateral 71%, bilateral 9% and vermis 20%
- Impaired cerebellar growth
- Silent with high neurologic deficits

Limperopoulos et al, Pediatrics 2005
Cerebellar Hemorrhage 26 w
White Matter Injury of Premature

- **Prevalence**
 - Low birth weight < 1000g
 - US 5-10%
 - MRI - 50%

 Inder et al, AJNR 2003

- **Pathology**
 - Coagulation necrosis
 - 25% hemorrhagic
 - 50% noncavitary

- **Pathogenesis**
 - Immature vessels in watershed
 - Lack autoregulation
 - Preoligodendrocyte vulnerability
 - Lack of antioxidant enzyme to break down free radicals
 - Glutamate
 - Microglia
White Matter Injury of Premature

- Site
 - WM
 - Periventricular
 - Optic radiations by trigones
 - Foramen Monroe
 - Deep or subcortical
 - Secondary gray
 - Thalami
 - BG
 - Cerebral cortex
 - Cerebellum
MRI Findings in WM Disease Premature

- **Acute**
 - Hyper T1
 - Hypo T2
 - <1 week restricted diffusion
 - Reduced FA

- **Delayed**
 - Cavitary
 - Disappear \(\rightarrow\) gliosis Flair signal abnormality
 - Volume loss
 - Delayed myelination
 - Reduced FA
 - Increased diffusion

Counsell et al, Arch Dis Child Fetal Neonatal Ed, 2003
Acute Premature WM Disease at 5 dol, 28 w
Hemorrhagic Premature WM Disease at dol 11, RDS, 32 w
Premature WM Disease?
Differential

- 18 day term s/p coarctation repair

- Consider
 - Cardiac ischemia
 - Infection
 - Inborn errors of metabolism
 - Hydrocephalus
 - In utero events
Chronic WM Injury
33 w TE NEC
Chronic Premature WM Disease in 17 m premature infant
Neurodevelopmental Deficits in WM Disease of the Premature

Outcomes
- Cognitive/motor delay
 - Spastic diplegia or quadriplegia
- Neurosensory impairment
 - Visual

Predictors/Term equivalent
- Moderate to severe WM abnormalities
- Gray matter less strongly associated
- US evidence of Grade III/IV and Cystic PVL
- Postnatal use of corticosteroids

Woodward et al, NEJM 2006
Diffuse Excessive High Signal Intensity in WM (DEHSI)

- Controversial
 - White matter injury
 - Increase diffusion
 - Poor neurologic outcome
 Counsell et al, Arch Dis Child Fetal Neonatal Ed, 2003
 - Transient normal process
 - No difference neurodevelopmental outcome
 - No difference ADC values with controls
 Hart et al Pediatric Radiology, 2011
Premature Severe Injury
Abruption 5 dol 32 w

- Severe
 - Deep gray nuclei/brainstem
 - Thalami
 - Dorsal brainstem
 - Anterior vermis
 - Lentiform nuclei
 - Perirolandic gyri
 - Cerebral cortex spared
 - WM and GMH
MRI vs US

- Predicting neurodevelopmental outcome
 - MRI
 - Sensitivity 100% and specificity 79%
 - US
 - Sensitivity 67% and specificity 85%

- MRI
 - Late-absent T1 shortening in PLIC

Valkama et al, Acta Paediatr 2000
Roelants-van Rijn et al, Neuropediatrics 2001
Conclusion

- Know normal
- Techniques
 - Conventional
 - MRA/MRV
 - Diffusion
 - Diffusion tensor imaging
 - Spectroscopy
- Aware patterns
- Differential
- Timing
 - 3-5 days
 - Diffusion positive
 - >1-2 weeks
 - Conventional imaging