Radioimmunotherapy of Lymphoma

Hedieh K Eslamy, MD
Seattle Children’s Hospital
Overview

- Lymphomas
- Therapies for lymphoma
- Radioimmunotherapy regimens
 - ^{90}Y- ibritumomab tiuxetan
 - ^{131}I- tositumomab
Lymphomas

- Malignancies of the lymphoid tissue
- Broadly classified into
 - Hodgkin’s lymphoma
 - Non-Hodgkin’s lymphomas
 - B-cell lymphomas: ≈ 85%
 - follicular and diffuse large B-cell lymphomas constitute ≤50 % of NHL
 - T-cell lymphomas
- Clinical patterns of disease
 - Indolent (low-grade) lymphomas: ≈ 50%
 - Aggressive lymphomas
- Ann Arbor staging is used for clinical staging
Lymphoma: Therapies *(pediatrics)*

- Chemotherapy
- Radiotherapy
 - only indicated for acute life-threatening complications refractory to initial chemotherapy or acute hemiplegia
- Hematopoietic stem cell transplantation
- Biological therapies
 - targeted therapy with monoclonal antibodies
- Surgery
 - limited role. Performed on patients in whom there is good reason to believe that total resection can be achieved without a mutilating procedure
- Combinations of above

Lymphoma: Therapies (adults)

- Chemotherapy
- Radiotherapy
- Hematopoietic stem cell transplantation
- Biological therapies
 - targeted therapy with monoclonal antibodies
 - lineage-restricted antigens
 - B-cells: CD-20 epitope
 - others: biological response modifiers, nonspecific immunotherapy, vaccination
- Radioimmunotherapy
- Combinations of above
CD20 Epitope

- CD20: 35-kd transmembrane glycoprotein
- A pan B-cell marker expressed on
 - normal B-cells
 - nearly all B-cell lymphomas (>90%)
- Initially appears in pre-B cell stage and disappears in plasma cells
- Specific function of CD20 is unknown
Radioimmunotherapy

- A unique therapeutic modality that uses an antibody carrier to target high-energy, short–path-length radionuclides to tumor sites with little effect on other solid organs
- **Components:** radioisotope combined with an anti-CD20-directed antibody
 - 90Y-ibritumomab tiuxetan: 90Y + chelator (tiuxetan) + ibritumomab
 - rituximab: chimeric (murine and human) monoclonal antibody
 - first MAb to be approved by the U.S. FDA for the treatment of cancer (1997)
 - 131I-tositumomab: 131I + tositumomab
 - tositumomab: murine monoclonal antibody
Anti-CD20 Radioimmunoconjugates

90Y–ibritumomab tiuxetan

- FDA approved for:
 - relapsed low-grade and follicular NHL
 - consolidation after initial chemotherapy
- Regimen:
 - 2 doses of unlabeled MAb, days 1 and 8
 - a dose of labeled Mab on day 8

131I-tositumomab

- FDA approved for:
 - relapsed low-grade and transformed NHL
- Regimen:
 - 2 two doses of unlabeled MAb, days 0 and 7-14
 - a dose of labeled Mab calculated to deliver a 75-cGy total body dose

RIT Administration Protocols

\(^{90}\text{Y- ibritumomab tiuxetan}\)
- Step A: Patient Selection and Eligibility
- Step B: Bio-distribution/Diagnostic scan
- Step C: Dose Calculation
- Step D: Therapeutic Dose Administration

\(^{131}\text{I-tositumomab}\)
- Step A: Patient Selection and Eligibility
- Step B: Thyroid protection
- Step C: Diagnostic and Dosimetry Scan
- Step D: Dose Calculation
- Step E: Therapeutic Dose Administration

Patient Selection

90Y- ibritumomab tiuxetan
- Relapsed or refractory, low-grade or follicular B-cell non-Hodgkin's lymphoma (NHL).
- Previously untreated follicular NHL who achieve a partial or complete response to first-line chemotherapy.

131I-tositumomab
- CD20-positive relapsed or refractory, low grade, follicular, or transformed non-Hodgkin’s lymphoma who have progressed during or after rituximab therapy, including patients with rituximab-refractory non-Hodgkin’s lymphoma

http://www.zevalin.com
http://www.bexxar.com
Patient Selection & Eligibility *(adults)*

- absolute neutrophil count $\geq 1500 \times 10^6/L$
- platelet count $\geq 100,000 \times 10^6/L$
 - full dose of RIT: $\geq 150,000 \times 10^6/L$
 - reduced RIT dose: $100,000 \times 10^6/L$ and $149,000 \times 10^6/L$
- imaging: CT or PET/CT
- pretreatment bone marrow aspiration and biopsy with chromosome analysis
 - marrow $\geq 15\%$ of normal cellularity
 - percentage of marrow cellularity occupied by lymphoma cells <25%
 - in previously treated patients rule out myelodysplastic syndromes
 - fluorescence *in situ* hybridization (FISH) or
 - conventional cytogenetics for chromosomal markers
RIT Administration Protocols

90Y ibritumomab tiuxetan
- Step A: Patient Selection and Eligibility
- Step B: Bio-distribution/Diagnostic scan
- Step C: Dose Calculation
- Step D: Therapeutic Dose Administration

131I tositumomab
- Step A: Patient Selection and Eligibility
- Step B: Thyroid protection
- Step C: Diagnostic and Dosimetry Scan
- Step D: Dose Calculation
- Step E: Therapeutic Dose Administration

A bio-distribution scan was obtained as an outpatient for exclusion of abnormal antibody tracer distribution (0.6 to 1.3 percent of patients) that would preclude treatment.
RIT Administration: FDA removed Bioscan requirement in November 2011

90Y- ibritumomab tiuxetan (simplified protocol)

- Step A: Patient Selection and Eligibility
- Step B: Unlabeled Rituximab Infusion
- Step C: Dose Calculation
- Step D: Therapeutic Dose Administration

Cold MAB infusion, followed within 4 hrs by radiolabelled MAb
• **Antigen sinking effect**: administered labeled MAb predominantly targets and accumulates within the normal reticuloendothelial system (liver & spleen) and circulating lymphocytes

• **Preloading**: infusion of unlabeled Mab is performed for both biodistribution and treatment studies, in an effort to minimize the *antigen sinking effect*
90Y-ibritumomab tiuxetan

Step C: Dose Calculation
- Platelet counts > 150,000: 0.4 mCi/kg (14.8 MBq/kg)
- Platelet counts between 100 and 150,000: 0.3 mCi/kg (11.1 MBq/kg)
- Platelets < 100,000: therapy contraindicated
- Maximum administered activity is 32 mCi

131I-tositumomab

Step D: Dose Calculation
- Tolerated maximum whole body radiation dose is 75cGy (65cGy, if platelets are 100,000-150,000)
A bio-distribution scan for the ^{90}Y ibritumomab tiuxetan radioimmunotherapy regimen is shown. Which choice is FALSE?

A. This regimen was FDA approved for the treatment of relapsed low-grade and follicular NHL in 2002
B. Rituximab is a murine monoclonal antibody (MAb)
C. 111Indium is the radiotracer used for imaging
D. Prior to the injection of the radiolabelled MAb, preloading is performed with unlabeled MAb to minimize the antigen sinking effect

E. ^{90}Yttrium is a beta emitter
Yttrium-90–ibritumomab tiuxetan therapy administration protocol

Step A: Patient Selection and Eligibility

Step B: Bio-distribution/ Diagnostic scan
Day 1:
Acetaminophen 650 mg and diphenhydramine 50 mg, 30 minutes prior to infusion
Unlabeled rituximab infusion (250 mg/m2) at a rate of at a rate of 50mg/hr, incremental to 400mg/hr
5 mCi or 185 MBq/1.6 mg antibody (10 mL) of 111In-Zevalin slow intravenous injection over 10 minutes; administered within 4 hours of the cold antibody infusion
Days 2-6:
Whole body planar images obtained at 48-72 hours (subsequent scanning optional)
Previously, images at 2-24, 48-72, and 90-120 hours

Step C: Dose Calculation
Assess the bio-distribution and if acceptable, determine the dose (0.4 or 0.3 mCi/kg based on platelet counts)

Step D: Therapeutic Dose Administration
Day 7/8/9: (exact timing depends on dose arrival and logistics)
Acetaminophen 650 mg and diphenhydramine 50 mg, 30 minutes prior to infusion
Unlabeled rituximab infusion (250 mg/m2) at a rate of 50mg/hr
Calculated dose of Zevalin slow IV infusion over 10 minutes through a low protein binding millipore filter (maximum dose 32 mCi or 1184 MBq); administered within 4 hours of the cold antibody infusion
Flush the catheter post infusion to administer complete dose
Assay the administration tubing set
Yttrium-90 –ibritumomab tiuxetan therapy administration protocol

Step A: Patient Selection and Eligibility

Step B: Bio-distribution/ Diagnostic scan
Day 1:
Acetaminophen 650 mg and diphenhydramine 50 mg, 30 minutes prior to infusion
Unlabeled rituximab infusion (250 mg/m2) at a rate of at a rate of 50mg/hr, incremental to 400mg/hr

Premedications are used to help reduce the side effects of monoclonal antibody (Mab)

Step C: Dose Calculation
Assess the bio-distribution and if acceptable, determine the dose (0.4 or 0.3 mCi/kg based on platelet counts)

Step D: Therapeutic Dose Administration
Day 7/8/9: (exact timing depends on dose arrival and logistics)
Acetaminophen 650 mg and diphenhydramine 50 mg, 30 minutes prior to infusion
Unlabeled rituximab infusion (250 mg/m2) at a rate of 50mg/hr
Calculated dose of Zevalin slow IV infusion over 10 minutes through a low protein binding millipore filter (maximum dose 32 mCi or 1184 MBq); administered within 4 hours of the cold antibody infusion
Flush the catheter post infusion to administer complete dose
Assay the administration tubing set
Yttrium-90–ibritumomab tiuxetan therapy administration protocol

Step A: Patient Selection and Eligibility

Step B: Bio-distribution/ Diagnostic scan
Day 1:
Acetaminophen 650 mg and diphenhydramine 50 mg, 30 minutes prior to infusion
Unlabeled rituximab infusion (250 mg/m2) at a rate of at a rate of 50mg/hr, incremental to 400mg/hr

The removal of the biodistribution scan requirement approved by the FDA in November 2011 simplified ZEVALIN administration

Step C: Dose Calculation
Assess the bio-distribution and if acceptable, determine the dose (0.4 or 0.3 mCi/kg based on platelet counts)

Step D: Therapeutic Dose Administration
Day 7/8/9: (exact timing depends on dose arrival and logistics)
Acetaminophen 650 mg and diphenhydramine 50 mg, 30 minutes prior to infusion
Unlabeled rituximab infusion (250 mg/m2) at a rate of 50mg/hr
Calculated dose of Zevalin slow IV infusion over 10 minutes through a low protein binding millipore filter (maximum dose 32 mCi or 1184 MBq); administered within 4 hours of the cold antibody infusion
Flush the catheter post infusion to administer complete dose
Assay the administration tubing set
Iodine-131–tositumomab therapy administration protocol

Step A: Patient Selection and Eligibility
Step B: Thyroid protection
Day -1:
Saturated solution of potassium iodide (SSKI) - 4 drops orally 3 times/day or Lugol's solution 20 drops orally 3 times/day or KI tablets 130 mg orally once/day; Administered from the day before until 14 days following therapy

Step C: Diagnostic and Dosimetry Scan
Day 0:
Acetaminophen 650 mg and diphenhydramine 50 mg, 30 minutes prior to infusion
Unlabeled tositumomab 450 mg intravenously in 50 ml saline over 1 hour
Small dosimetric amount of 131I-tositumomab (5 mCi or 185 MBq of 131I and 35 mg Tositumomab) in 30 ml saline over 20 minutes
Whole body dosimetry and bio-distribution immediately following injection within one hour, pre-void
Day 2, 3 or 4:
Whole body dosimetry and bio-distribution, post void
Day 6 or 7:
Whole body dosimetry and bio-distribution, post void (to maintain consistency, the same camera, collimator, and set up are utilized on all the dosimetric scans)

Step D: Dose Calculation
Assess the bio-distribution and if acceptable, determine the dose
Calculate the dose to deliver 75cGy total body dose (65 cGy, if platelets are 100-150,000)

Step E: Therapeutic Dose Administration
Day 7 up to 14: (exact timing depends on dose arrival and logistics):
Acetaminophen 650 mg and diphenhydramine 50 mg, 30 minutes prior to infusion
450 mg infusion of unlabeled Tositumomab in 50 mL of saline over 1 hour
20 minute infusion of Bexxar in a volume of 30 mL given through a millipore micron filter
Flush the catheter post infusion to administer complete dose
Assay the administration tubing set
Evaluation for Antitumor Response

- Recommended at week 12
- Subsequent reevaluation as per standard of care
- The first reevaluation often does not reflect the maximal response. Improvement in response without further therapy can occur commonly
- In the setting of normal blood counts, repeat bone marrow evaluation is needed only to confirm CR when it was involved prior to treatment
Contraindications to RIT (both agents)

- Pregnancy or ongoing breast feeding
- Known allergy or hypersensitivity to the murine antibodies, or components of the therapy
- Absolute Neutrophil Count <1500 cells/cu mm
- Platelet count <100,000
- Bone marrow involvement of more than 25 percent involvement
- Effective beam radiation therapy of >25 percent of active marrow
- Prior autologous stem cell transplant
- Elevated HAMA titers with altered biodistribution
Contraindications to RIT (I131-tositumomab)

- Iodine allergy
- Urinary incontinence (relative contraindication)
- Non-compliant patients
- Reduced renal function with creatinine > 1.5
Adverse event for RIT

• Myelosuppression most common
 • Predictable, generally transient, and reversible
 • Hematologic nadirs begin to appear at week 4, bottoming out at 6–8 weeks, with subsequent recovery
 • Recommended supportive care: weekly complete blood counts, assessed beginning at week 4 until the nadir is complete and blood cell counts are rising. Aspirin or coumadin is stopped once platelets are below 75,000/mm3 or at the sign of any bleeding tendency. Granulocyte growth factors may be administered if clinically indicated
Summary

• Lymphomas
• Therapies for lymphoma
• Radioimmunotherapy regimens
 • ^{90}Y- ibritumomab tiuxetan
 • ^{131}I- tositumomab