2013 SPR Cardiac Session

What is it?
Black Blood Imaging

Taylor Chung, M.D.
Associate Director, Body and Cardiovascular Imaging
Department of Diagnostic Imaging
Children’s Hospital & Research Center Oakland
Oakland, California, U.S.A.
Disclosure

- No financial disclosure relevant to the subject matter of this presentation
Disclosure

• No financial disclosure relevant to the subject matter of this presentation

• I am not a physicist
Acknowledgement

• All the nice slides belongs to Raja Muthupillai
SAM question

• For black blood imaging using inversion recovery technique, it is best to have a single inversion pulse to null the blood as there is enough difference between the T1 of myocardium and blood such that the myocardium will be seen well

• True or False
Black Blood Imaging

- Two main sequences
 - Basic Spin Echo
 - Faster Variants of Basic SE (TSE / EPI)
 - Double Inversion Black-Blood Imaging
 - Variants of Double Inversion
Spin Echo Black Blood Imaging

- Simple Spin Echo Imaging
 - Outflow of Spins from the imaging volume between the 90° and the 180° degree pulses
Spin Echo BB Imaging: Technique

- ECG triggered Scan
- TR = 1 heart beat
- Multi-Slice Acquisition
SE (SE-EPI / SE-TSE): Summary

• Cardiac Triggered Scans; free-breathing
• Use TE = 15 - 20 ms to achieve black blood (TOF effect)
• Multi-Slice Acquisitions - Quick BB Survey of Anatomy
• Use Multiple NSA (in combination with EPI/TSE)
• Use Saturation pulses (to minimize inflow or fat ghosting)
• Both T1 and T2 weighting is possible
• T2W important in edema imaging
 - Set TE = 60 ms
 - Set TR = 2 to 4 heart beats (to achieve TR = 2000 ms)
Sedated 6-day-old infant – double aortic arch

3 mm thick / 10% gap 1.6 mm thick / 10% gap

VCG-triggered Spin echo T1W EPI (5 shots) with saturation bands
FOV 240mm, 256 x 512(recon), **SENSE factor 2, 8 NSA**
16 slices, HR = 123 bpm; TR/TE = 480/15 ms; **scan time 3:14 mins**
Sedated 6-day-old infant – double aortic arch

VCG-triggered Spin echo T1W EPI (5 shots) with saturation bands
FOV 240mm, 256 x 512(recon), SENSE factor 2, 8 NSA
16 slices, HR = 123 bpm; TR/TE = 480/15 ms; scan time 3:14 mins
Sedated 6-day-old infant – double aortic arch

VCG-triggered Spin echo T1W EPI (5 shots) with saturation bands
FOV 240mm, 256 x 512(recon), SENSE factor 2, 8 NSA
16 slices, HR = 123 bpm; TR/TE = 480/15 ms; scan time 3:14 mins
Sedated 6-month-old infant with Coarctation Combining EPI, SENSE, Respiratory Triggering

VCG-triggered Spin echo EPI (5 shots); 2mm thick, no skip FOV 260mm, 256 x 256; SENSE factor 2, 4 NSA, Resp Trig 16 slices, \(HR = 130 \text{ bpm} \); TR/TE = 462/15 ms; scan time 3 - 4 mins
VCG-triggered Spin echo EPI (5 shots); 2mm thick, no skip
FOV 260mm, 256 x 256; SENSE factor 2, 4 NSA, Resp Trig
16 slices, HR = 130 bpm; TR/TE = 462/15 ms; scan time 3 - 4 mins
Edema imaging
Freely breathing sedated 10-year-old boy S/P cardiac arrest

Turbo spin echo T2W (Turbo factor 30) with fat suppression
Respiratory triggered, 2 NSA’s, SENSE = 1.5
1.4 x 1.8 x 8 mm; TR = 2 HBs (HR 55), TE = 60
Conventional Spin Echo: Limitations
Conventional Spin Echo: Limitations

- Conventional SE is time consuming
 - Faster Acquisition Techniques - TSE, EPI, + SENSE
Conventional Spin Echo: Limitations

- Conventional SE is time consuming
 - Faster Acquisition Techniques - TSE, EPI, + SENSE
- Blood Signal Suppression depends on Spin Velocity
 - Incomplete suppression of slow flow
 - Less of a problem in infants and younger patients
 - In-plane flow is problematic
Conventional Spin Echo: Limitations

• Conventional SE is time consuming
 – Faster Acquisition Techniques - TSE, EPI, + SENSE
• Blood Signal Suppression depends on Spin Velocity
 – Incomplete suppression of slow flow
 – Less of a problem in infants and younger patients
 – In-plane flow is problematic

• Alternative: Inversion recovery (like FLAIR, ‘STIR’)
 – Most optimal with breath-holding
 – Can use multiple NSA for free breathing scan but long scan
Single Inversion BB Imaging

- ECG triggered Scan
- TR = 1 or 2 heart beats
- 2D / M2D Acquisition
- TSE Readout / BH
Single Inversion BB Imaging

• ECG triggered Scan
• TR = 1 or 2 heart beats
• 2D / M2D Acquisition
• TSE Readout / BH
Single Inversion BB Imaging

- ECG triggered Scan
- TR = 1 or 2 heart beats
- 2D / M2D Acquisition
- TSE Readout / BH
Single Inversion BB Imaging

- ECG triggered Scan
- TR = 1 or 2 heart beats
- 2D / M2D Acquisition
- TSE Readout / BH
Single Inversion BB Imaging

- ECG triggered Scan
- TR = 1 or 2 heart beats
- 2D / M2D Acquisition
- TSE Readout / BH
Double Inversion BB Imaging

--- Myocardium

--- Blood
Double Inversion BB Imaging

- • The first non-selective inversion inverts everything
Double Inversion BB Imaging

- The first non-selective inversion inverts everything

Myocardium
Blood
Double Inversion BB Imaging

- The first non-selective inversion inverts everything
- The second selective inversion pulse re-inverts the signal within slice

Myocardium
Blood
Single Vs Double Inversion BB

Single IR
Dual IR

Note the increased SI in the myocardium in the Dual IR!
(for the same TR/TE/TI as the Single IR sequence)
Choose correct TI:

- The Inversion Delay should be adjusted for Heart Rate (or TR) to improve nulling of blood signal

<table>
<thead>
<tr>
<th>HR (bpm)</th>
<th>40</th>
<th>50</th>
<th>60</th>
<th>70</th>
<th>80</th>
<th>90</th>
<th>100</th>
<th>110</th>
<th>120</th>
<th>130</th>
</tr>
</thead>
<tbody>
<tr>
<td>TR (2hb)</td>
<td>3000</td>
<td>2400</td>
<td>2000</td>
<td>1714</td>
<td>1500</td>
<td>1333</td>
<td>1200</td>
<td>1091</td>
<td>1000</td>
<td>923</td>
</tr>
<tr>
<td>TI (msec)</td>
<td>737</td>
<td>679</td>
<td>624</td>
<td>574</td>
<td>529</td>
<td>490</td>
<td>456</td>
<td>426</td>
<td>399</td>
<td>375</td>
</tr>
</tbody>
</table>
Calculating the correct TI

\[TI = \ln\left(\frac{2}{(1 + \exp(-TR / T_1))}\right)T_1 \]

Blood \(T_1 = 1200 \text{ msec} \)

For Post Contrast Scans, \(TI \) needs to be shorter to null CE-Blood.
Example of incorrect TI

DIR - T1W

DIR - T1W post Gad without change in TI with fat sat (inhomogeneous)
Choose Long enough TR!

- At higher HR, keep TR > 1500 msec, for good signal from myocardium!

\[TR = 800 \text{ msec} \quad \text{TR} = 1600 \text{ msec} \]
Double IR Turbo Spin Echo

Non-breath-hold

TR = 3 R-R; TE = 65; TSE factor 27; FOV = 360; 230 x 512 (r)
4 mm thick / gap 2 mm; 3 slices; 4 NSA’s; scan time 2:30 min
Double IR Turbo Spin Echo

4 NSA, non breath hold

2 NSA/resp trig, non breath hold
Anesthesized 3.1 kg neonate with heterotaxy
? pulmonary vein anatomy

Breath-holding double inversion recovery turbo spin echo
1.8 mm thick, no skip, 0.8 x 1.1 mm, 2 NSA
TR= 2RR, TE 40, ~ 12 sec / slice

Courtesy of Andrew Powell, David Annese, Children’s Hospital, Boston
Triple inversion recovery

Cardiac fibroma – better conspicuity with triple IR
T2W TSE with fat sat Triple IR
Freely breathing sedated 3-month-old with Kawasaki disease

Vessel wall inflammation showed on triple inversion recovery with 3 NSA’s
Freely breathing sedated 3-month-old with Kawasaki disease

Vessel wall inflammation showed on triple inversion recovery with 3 NSA’s
Double IR TSE
Double IR TSE

- TR = 2 to 3 RR depending on HR to get TR > 1500
Double IR TSE

- TR = 2 to 3 RR depending on HR to get TR > 1500
- Minimize acquisition duration to 40 ms for high heart rates
Double IR TSE

- TR = 2 to 3 RR depending on HR to get TR > 1500
- Minimize acquisition duration to 40 ms for high heart rates
- Set trigger delay to “longest”
Double IR TSE

- TR = 2 to 3 RR depending on HR to get TR > 1500
- Minimize acquisition duration to 40 ms for high heart rates
- Set trigger delay to “longest”
- Run a dummy scan to check blood nulling and trigger delay and acquisition duration
Double IR TSE

- TR = 2 to 3 RR depending on HR to get TR > 1500
- Minimize acquisition duration to 40 ms for high heart rates
- Set trigger delay to “longest”
- Run a dummy scan to check blood nulling and trigger delay and acquisition duration
- Steady heart rate is essential theoretically
Double IR TSE

- TR = 2 to 3 RR depending on HR to get TR > 1500
- Minimize acquisition duration to 40 ms for high heart rates
- Set trigger delay to “longest”
- Run a dummy scan to check blood nulling and trigger delay and acquisition duration
- Steady heart rate is essential theoretically
- Considering using parallel imaging to decrease acquisition duration/heart beat if needed
Double IR TSE

- TR = 2 to 3 RR depending on HR to get TR > 1500
- Minimize acquisition duration to 40 ms for high heart rates
- Set trigger delay to “longest”
- Run a dummy scan to check blood nulling and trigger delay and acquisition duration
- Steady heart rate is essential theoretically
- Considering using parallel imaging to decrease acquisition duration/heart beat if needed
- Adjust parameters for appropriate breath-hold duration
Double IR TSE

- TR = 2 to 3 RR depending on HR to get TR > 1500
- Minimize acquisition duration to 40 ms for high heart rates
- Set trigger delay to “longest”
- Run a dummy scan to check blood nulling and trigger delay and acquisition duration
- Steady heart rate is essential theoretically
- Considering using parallel imaging to decrease acquisition duration/heart beat if needed
- Adjust parameters for appropriate breath-hold duration
- Can use 3 NSA’s or respiratory trigger for free breathing
Double IR TSE

- TR = 2 to 3 RR depending on HR to get TR > 1500
- Minimize acquisition duration to 40 ms for high heart rates
- Set trigger delay to “longest”
- Run a dummy scan to check blood nulling and trigger delay and acquisition duration
- Steady heart rate is essential theoretically
- Considering using parallel imaging to decrease acquisition duration/heart beat if needed
- Adjust parameters for appropriate breath-hold duration
- Can use 3 NSA’s or respiratory trigger for free breathing
 - Can result in long scan time
SAM question

• For black blood imaging using inversion recovery technique, it is best to have a single inversion pulse to null the blood as there is enough difference between the T1 of myocardium and blood such that the myocardium will be seen well

• True or False
SAM question

• For black blood imaging using inversion recovery technique, it is best to have a single inversion pulse to null the blood as there is enough difference between the T1 of myocardium and blood such that the myocardium will be seen well

• False: need 2 inversion pulses (non-selective and slice selective)

• Mulkern RV, Chung T. From signal to image: magnetic resonance imaging physics for cardiac MR. Pediatr Cardiol 2000; 21:5-17
What is it?
Black Blood Imaging

2013 SPR Cardiac Session

Taylor Chung, M.D.
Associate Director, Body and Cardiovascular Imaging
Department of Diagnostic Imaging
Children’s Hospital & Research Center Oakland
Oakland, California, U.S.A.