Advanced Fetal Cardiac Doppler

Mary T. Donofrio, MD, FAAP, FACC, FASE
Associate Professor of Pediatrics
Director of the Fetal Heart Program and Fetal Delivery Service
Children’s National Medical Center

Why Doppler?

- Physiologic and functional assessment
 - Assessment of blood flow
 - Across valves
 - Stenosis
 - Regurgitation
 - In vessels
 - Direction of flow (backwards is never good)
 - Velocity
 - Vascular reactivity
 - In fetal shunt pathways: Predicts postnatal care
 - Ductus arteriosus: Reversed flow ductal dependent pulmonary flow
 - Foramen ovale/aorta: Reversed flow ductal dependent systemic flow
 - Assessment of cardiac rhythm
 - Assessment of heart function

Fetal Doppler

Cardiac Doppler
1. Inflows
2. Outflows
3. Doppler tissue imaging

Arterial Doppler
1. Ductus Arteriosus
2. Pulm Arteries
3. Aorta/ Isthmus
4. Cerebral
5. Umbilical

Venous Doppler
1. Umbilical
2. Ductus Venous
3. IVC
4. Hepatics

Doppler Inflows

Tricuspid Valve
Mitrval Valve

Doppler Outflows

Pulmonary Valve
Aortic Valve

Diagnosis of Valve Disease

- Valve gradient
 - \(P = 4v^2 \) (modified Bernoulli equation)
Ductus Arteriosus Doppler

Predictor of postnatal compromise

Ductus Arteriosus Doppler in Tetralogy of Fallot

Predictor of postnatal compromise

Branch PA Doppler

Ductus Arteriosus Doppler in Transposition of the Great Arteries

Predictor of postnatal compromise

Pulmonary Reactivity

♥ Pulmonary Circulation In-Utero
- High PVR limits pulmonary blood flow (10-20% CCO to lungs)
- PVR very sensitive to oxygen in the 3rd trimester

♥ Pulmonary Reactivity Test
- Maternal delivery of 60% humidified O2 via facemask (hyperoxia)
- 20-26 weeks: no change
- 31-36 weeks:
 - MPA, RPA, LPA resistance decreased
 - DA resistance increased
 - Qp increased

Pulmonary Reactivity Testing in High Risk Fetuses

- Study of fetuses at risk for lung hypoplasia (Broth, 2002)
 - CDH
 - Renal disease
 - CCAM
- Results:
 - 52% reactive
 - Only 1 death
 - 48% non-reactive
 - 79% with a non-reactive test died
- Prediction of neonatal death: sensitivity 92%, specificity 82%

- Study of fetuses with HLHS (Squart, 2009)
 - HLHS with open atrial septum vs. restrictive or intact atrial septum
- Prediction of intervention: sensitivity 100%, specificity 94%

Pulmonary Vein Doppler in HLHS

- PV f/r VTI < 3
- Predictor of postnatal compromise (Michelfelder, et al)

Doppler Assessment of Rhythm

- M Mode
- Doppler
- Tissue Doppler

Doppler Assessment of Heart Function

- Inflow
- Outflow
- Tei or MPI index
- CVP score
 - Venous Doppler
 - Arterial Doppler

Doppler Inflows

- Tricuspid and Mitral Valves
 - Assessment of diastolic function
 - E: passive filling, A: active filling
 - A>E wave through gestation
 - E/A~0.6 mid gestation; 0.8 late gestation

Reed, et al
Doppler Outflow

- Pulmonary and Aortic Valves
 - Stroke Volume/ Cardiac Output
 - \(CO = HR \times VTI \times CSA \text{ (CSA}=cm^2) \)
 - Right and left CO increase exponentially throughout gestation
 - Right CO> Left CO through gestation

Molho et al, Circulation 2001

Cardiac Output in Volume Loaded States

- Fetuses with volume load evaluated
 - SCT
 - Vascularized neck mass
 - Cerebral AVM
 - Teratoma

Rychik, Prog in Ped Cardiol 2006

Tei Index

- 50 normal fetuses
 - 35 IUGR/30 of DM
- Normal:
 - No difference between LV and RV
 - Gradual decrease from 18 wks to term
 - Immediate increase at birth, then a gradual decrease
- Abnormal in IUGR and fetuses of DM

Tsutsumi et al, Ped Int 1999

Tei Index in fetuses exposed to indomethecin

- Abnormal RV Tei in fetuses with ductal restriction
- Improved RV Tei with discontinuation of indomethacin

Tei in fetuses with heart disease

- Cardiomyopathy, aortic stenosis, heterotaxy, TTTS, gastroschesis, cystic hygroma (with and without hydrops)
- Abnormal Tei noted in those with hydrops

Tei Index in fetuses with TV dysplasia or Ebstein’s

- LV Tei abnormal
 - IVRT prolonged (diastolic dysfunction)
 - ET short (possibly due to decreased preload)
Velocity Vector Imaging

In normal fetuses:
- Systolic/diastolic velocities increased with GA
- Strain does not correlate with GA
- Results suggest increased velocity due to myocardial growth and not improved contractility

\[\varepsilon = \frac{\Delta \ell}{\ell_0} \]

Venous Doppler

- **Veins**
 - Umbilical vein
 - Ductus venosus
 - IVC and hepatic veins
- **Representative of RA and RV diastolic pressure**
- **Venous Index**
 - Peak Velocity Index = Systolic-Atrial/Diastolic Velocity
- **In obstetrics- UV or DV Doppler pattern with cessation of flow or reversed flow during atrial systole is suggestive of fetal cardiac decompensation**

UV and DV Doppler

- **Umbilical Vein**
 - Normal
 - Abnormal
- **Ductus Venosus**
 - Normal
 - Abnormal

Venous Doppler in CHD

- **IVC Doppler in CHD**
 - Diagnoses: TA/HRHS, HLHS, VSD, other CHD
 - Abnormal venous Doppler
 - Tricuspid Atresia/HRHS
 - In other CHD, only with abnormal heart function or rhythm
- **DV/IVC Doppler in CHD**
 - Fetuses with isolated CHD had normal venous PVI
 - 7 with abnormal PVI
 - Pulm stenosis, Tricuspid Atresia (2) (both with small FO)
 - TOF
 - HLHS (2), coarctation (with decreased or reversed FO flow)
 - Fetuses with other anomalies had abnormal venous PVI
 - Hydrops, genetic abnormality or IUGR

Arterial Doppler

- **Indices- Representative of vascular resistance**
 - S/D ratio
 - Resistance Index (RI) = Systolic–Diastolic/Systolic Velocity
 - Pulsatility Index (PI) = Systolic–Diastolic/Mean Velocity
- **RI ratios- Represent flow redistribution between vasc beds**
 - Cerebral RI / Placental RI (CPR)
 - CPR > 1 is normal
 - CPR < 1 suggests a flow redistribution (Brain sparing)
 - Placental disease: NI RI_PU/L / Increase RI_PU/L
 - Hyposensia: Decreased RI_PU/L / NI RI_PU/L
 - Ratios more predictive of compromise than using indices alone

Umbilical Artery

- Normal
 - Abnormal
Middle Cerebral Arteries

Normal

Abnormal

Cardiovascular Profile Score

Huhta, Clin Obstet Gyn 2010

CVP Score

♥ CVP in fetuses with hydrops

♥ Results:
 – CVP = 6 (range 5-6) in those with perinatal mortality
 – CVP = 7 (range 4-8) in survivors

• Serial Evaluation
 – CVP decreased a median of 1.5 pts in those who died
 – CVP increased a median of 1.0 pts in those who lived

• Best predictor for an adverse outcome: UV and DV Doppler

Cerebral Resistance in CHD

Hofstader, et al

♥ Cerebral resistance is altered in CHD

• Hypoxia plays a role
 – Lesions with TGA or intra-cardiac mixing are affected
• Cardiac output plays a role
 – Single ventricle fetuses more affected
 – HLHS most affected

♥ Cerebral resistance varies with gestational age

• Periods of critical brain development

♥ Alterations in cerebral resistance may have neurologic effects

• Relationship between CPR and head circumference
• Relationship between CPR and brain lactate

Fetal Doppler: Summary

♥ Doppler is a useful tool in fetal cardiology

• Essential
 – Diagnosis of CHD
 • Severity of valve disease
 • Ductal dependence
 – Assessment of rhythm abnormalities

• Useful
 – Physiologic assessment of disease severity
 • TGA, HLHS
 – Cardiovascular function
 • CO
 • PVR

• May be beneficial
 – Advanced function assessment
 • Tei
 • Regional wall motion, strain