The Pediatric Knee and Ankle: Orthopaedic Perspectives

Scott B Rosenfeld, MD
Division of Pediatric Orthopaedics
Texas Children’s Hospital
Disclosures

• I have no disclosures
Talk Outline

• Most common knee and ankle problems treated surgically by a pediatric orthopaedic surgeon

• What imaging modalities we use in the work up

• What the problem looks like on the inside compared to pre-operative images
Why are the knee and ankle important?

- Most commonly injured joints in sports activity

- 30 million children participate in organized sports in the U.S.

- 3 million sports injuries/year in U.S.
 - 70% from youth sports – *Pediatrics 2001*

- Injuries: >10 million pediatric PCP office visits/year (1 in 10)
 - Sports injuries ~ ¼ of all pediatric injuries
Epidemiology of Pediatric Injury-Related Primary Care Office Visits in the United States

Simon J. Hambidge, MD, PhD*†; Arthur J. Davidson, MD, MSPH§‖; Ralph Gonzales, MD, MSPH§‖; and John F. Steiner, MD, MPH§‖

| TABLE 4. Leading Causes of Pediatric IRVs to PCP Offices in the United States |
|---|---------|----------------|----------|
| Cause (ICD-9-CM E-Code) | Sample Size | Office Visits (in 1000s) | % IRVs* |
| Sports-related† | 62 | 2739 | 19 |
| Accidental fall (E880–E888)‡ | 50 | 2386 | 16 |
| Natural factors (E900–E909)§ | 55 | 2284 | 15 |
| Accidents caused by cutting instruments (E920–E920.9) | 26 | 1217† | 8 |
| Motor vehicle accident (E810–E825) | 13 | 739† | 5 |
| Intentional injury|||11 | 529† | 4 |
| Bums (E890–E899, E924–E924.9, E925, E926.2) | 10 | 367† | 2 |
Besides Sports

• Location of common congenital and developmental problems
 - Discoid Meniscus
 - OCD

• Location of foreign bodies

• Common site of infection
Children are not small adults!

- Different problems/injuries with different treatments
- Anatomy is different
 - Joint hyper-mobility
 - Apophyses
 - Physis
 - Weaker than ligaments
- Growth allows for remodeling
- May heal without surgical intervention
Common Knee and Ankle Problems

• Osteochondritis
 Dessicans of the knee

• Discoid Meniscus

• Osteochondral fracture
 of the talus

• Ankle infections
Osteochondritis Descicans - Knee

- Acquired lesion of subchondral bone

- Proposed etiologies
 - Epiphyseal ossification abnormality (like Perthes)
 - Traumatic
 - Vascular

- 25% bilateral

- 70% located at lateral border of medial femoral condyle
Osteochondritis Dessicans - Knee

• Clinical Presentation
 - +/- history of injury
 - Knee pain
 - Swelling/Effusion
 - Tenderness over condyle
 - Catching, locking
 - Loss of terminal extension or flexion
Osteochondritis Dessicicans - knee

• Goals of imaging
 - Location
 - Size
 - Stability

• Modalities
 - Radiographs
 - MRI
Osteochondritis Dessicans - knee

• Prediction of stability
 - Based on MRI appearance
 - Classifications made for adults
 - Don’t translate well to kids
 • Specificity of only 11% and 15% (DeSmitt, Haywood)
 - No high level evidence in juvenile OCD
Osteochondritis Dessicans - knee

- **Treatment**
 - Skeletal maturity
 - Open or closed physis
 - Perceived stability

- **Activity Modification**
 - Decreased weightbearing
 - Immobilization
 - Range of motion

- **Surgery**
 - Arthroscopic vs open
 - Drilling
 - Reduction and fixation
Osteochondritis Dessicans - knee

• Case 1

• 10 year old female cheerleader

• 2 week history of left knee pain, swelling, popping

• Full knee ROM, mild effusion

• TTP medial joint line

• AP, lateral, notch view, sunrise view knee
• Treatment decision making
 - Open physis
 - Cartilage intact = stable
 - No locking
 - Full ROM

• Non-operative
 - Activity modification
 - Knee immobilization
 - PT for ROM
4 months later…
Osteochondritis Dessicans - knee

• Case 2

• 15 year old female with right knee pain for 6 months
 - Swelling, catching, locking

• Basketball player
 - No injury

• Knee effusion

• Block to terminal extension

• Ordered AP and lateral knee radiographs
• Treatment decision making
 - Closed physes
 - Displaced OCD fragment
 - Block to full extension

• Surgical treatment
 - Reduction and fixation
 - Removal and microfracture
One year later....
Discoid Meniscus

• Common congenital anomaly
 - Discoid shape not a stage in development

• Incidence 0.4%-17%
 - Only the symptomatic ones

• 99% lateral meniscus

• 20% bilateral

• Most are asymptomatic
Discoid Meniscus

• Classifications
 - Watanabe
 • 1. Complete discoid
 • 2. Incomplete discoid
 • 3. Incomplete discoid no posterior attachment
 - Jordan, et al
 • Stable vs Unstable
 • Shape
 • Symptomology
 ➢ Direct treatment plan

*Andrish JT
Discoid Meniscus

• Presentation
 - Type 1 and 2 – horizontal and radial tears
 • Knee pain and swelling
 - Type 3 – snapping knee syndrome
 • Block to full extension

• What I order
 - AP, lateral radiographs
 - MRI
Discoid Meniscus

- Case 3

- 7 y.o. female with painful snapping right knee

- Occasional swelling

- Block to terminal extension

- Visible snapping in lateral compartment
Discoid Meniscus
Discoid Meniscus

• Treatment Plan
 - Arthroscopy
 - Partial meniscectomy (saucerization)
 - Probable meniscal repair
Ankle

• Injuries
 - Sprains
 - Fractures
 - OCD lesions

• Infections
 - Septic arthritis
 - Osteomyelitis
Talus Osteochondral Lesion

• Case 4

• 12 year old s/p MVC

• Right ankle pain and swelling

• Diffusely TTP
Talus Osteochondral Lesion

• Looks like a lateral osteochondral lesion

• Ordered MRI

• What I want to know
 - Where is it?
 - Is there bone attached?
 - Is the cartilage intact?
Treatment Decision

• Displaced anterior-lateral osteochondral fragment
 - Cartilage disrupted
 - Bone attached

• Open reduction and internal fixation
3 months later…
Infections

• Acute hematogenous osteomyelitis
 - Affects 1 in 5000 children < 13 y.o.
 - More resistant and virulent bacterial strains make course and treatment more complicated
 • Septic arthritis
 • Subperiosteal abscess
Infections

- Imaging
 - Radiographs
 • No changes in first week of infection
 - Bone scan
 • Help localize focus
 • May be cold
 • Doesn’t distinguish specific location of infection
 - MRI
 • Very sensitive
 • Detects edema early
 • Pinpoints abscess/osteo
Infections

• Septic arthritis
 - MRI helps better understand the infectious disease
 - Are there adjacent infections that need to be treated simultaneously?

<table>
<thead>
<tr>
<th>Joint</th>
<th>Adjacent infections</th>
</tr>
</thead>
<tbody>
<tr>
<td>Knee</td>
<td>47%</td>
</tr>
<tr>
<td>Hip</td>
<td>63%</td>
</tr>
<tr>
<td>Shoulder</td>
<td>100%</td>
</tr>
<tr>
<td>Ankle</td>
<td>80%</td>
</tr>
<tr>
<td>Elbow</td>
<td>63%</td>
</tr>
<tr>
<td>Wrist</td>
<td>0</td>
</tr>
</tbody>
</table>
Infections

• Septic ankle
 - Aspiration in ED showed pus

• Pre-op MRI
 - Adjacent osteomyelitis and distal tibia subperiosteal abcess
Infections

• Case 5

• 2 y.o. boy with 2 day history of
 - fever, refusal to bear weight, swollen lower leg and ankle

• Xrays negative
Infections

- MRI with contrast

- What I want to see
 - Where is the infection?
 - Osteomyelitis?
 - Intramuscular abscess?
 - Subperiosteal abscess?
 - Ankle joint effusion?
 - Localizer mode
Thank you