Simulation in Radiology Education

Ellen C. Benya, MD

Department of Medical Imaging,
Ann & Robert H. Lurie Children’s
Hospital of Chicago

Department of Radiology, Northwestern
University Feinberg School of Medicine
“Simulation is a technique, not a technology, to replace or amplify real experiences with guided experiences that evoke or replicate substantial aspects of the real world in a fully interactive manner.”

Key Components of Simulation Education

- Clearly stated objectives presented to student prior to simulated experience
- Student prepared with basic knowledge of clinical material
- Hands-on deliberate practice
- Debriefing with feedback on performance
Evolution or “Revolution” in Medical Education
Apprenticeship Model

Objectives/Competency Based Model
Apprenticeship Model

• **Strength** –
 - Trainees learn skills with oversight on real patients

• **Weakness** –
 - “July Effect”
 - Learning is dependent on exposure to clinical material
Objectives/Competency Based Model

The Pediatric Radiology Milestone Project

Published by The Accreditation Council for Graduate Medical Education and The American Board of Radiology

July 2015

ACGME Milestone Project

- Designed to help all residencies and fellowships produce highly competent physicians
- Provide more explicit and transparent expectations of performance
- Support self-directed learning and assessment
- Facilitate better feedback for professional development
Pediatric Radiology Milestones

Version 2/2014

THE PEDIATRIC RADIOLOGY MILESTONES: ACGME REPORT WORKSHEET

Competence in Procedures — Patient Care 3

<table>
<thead>
<tr>
<th>Level 1</th>
<th>Level 2</th>
<th>Level 3</th>
<th>Level 4</th>
<th>Level 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Competently performs basic* pediatric procedures under direct supervision</td>
<td>Competently performs basic and intermediate* pediatric procedures with indirect supervision</td>
<td>Competently performs advanced* pediatric procedures under direct supervision</td>
<td>Competently, efficiently, and independently performs basic and intermediate* pediatric procedures</td>
<td>Competently and independently performs advanced pediatric-specific procedures</td>
</tr>
<tr>
<td>Recognizes complications of basic procedures</td>
<td>Recognizes complications of intermediate procedures</td>
<td>Efficiently performs basic* pediatric procedures with indirect supervision</td>
<td>Examples include: Fluoroscopy - Intussusception reduction - Contrast enema - VCUG - Bladder catheterization - Upper GI series - Airway fluoroscopy - Modified barium swallow</td>
<td>Ultrasound/Doppler - Head and neck - Spine - Hips - Abdomen – pyloric stenosis, appendicitis, intussusception - Pelvic/testicular</td>
</tr>
</tbody>
</table>

Comments:

*as defined by the fellowship program

Not yet achieved Level 1 □
Keys to Developing Competence

- Identify training goals
- Motivation to improve
- Opportunity to repeat and refine performance
- Critique/Feedback to Trainees

Key Components of Simulation Education

• Clearly stated objectives presented to student prior to simulated experience

• Student prepared with basic knowledge of clinical material

• Hands-on deliberate practice

• Debriefing with feedback on performance
Achieving Competence with Simulation

Identify training goals → Clearly stated objectives prior to simulated experience

Motivation to improve → Student prepared with basic knowledge of clinical material

Opportunity to repeat and refine performance → Hands-on deliberate practice

Critique to Trainees → Debriefing with feedback on performance
Type of Simulators

- Low fidelity
 - Standardized patients
- High fidelity
 - Part-task trainers
 - Virtual reality
 - Mannequins
• **Anesthesiology**
 - 60-70 high-fidelity anesthesia simulation centers in the US for med students and trainees
 - Mandatory simulation for MOC

• **Surgery**
 - 40 centers with advanced simulation training worldwide run by the ACS

SIMULATION IN RADIOLOGY

EDITORS

HUGH J. F. ROBERTSON, MD, DMR, FRCPC, FRCR, FACR
PROFESSOR OF CLINICAL RADIOLOGY
LOUISIANA STATE UNIVERSITY SCHOOL OF MEDICINE
AND
CLINICAL PROFESSOR OF RADIOLOGY
TULANE UNIVERSITY MEDICAL CENTER
NEW ORLEANS, LOUISIANA

JOHN T. PAIGE, MD
ASSOCIATE PROFESSOR OF CLINICAL SURGERY
DIRECTOR, APPLIED SURGICAL SIMULATION
LOUISIANA STATE UNIVERSITY SCHOOL OF MEDICINE
NEW ORLEANS, LOUISIANA

LEONARD R. BOK, MD, MBA, JD
PROFESSOR OF RADIOLOGY
CHAIRMAN, DEPARTMENT OF RADIOLOGY
LOUISIANA STATE UNIVERSITY SCHOOL OF MEDICINE
NEW ORLEANS, LOUISIANA

OXFORD UNIVERSITY PRESS
Simulation in Radiology

- Contrast Reactions
 - high fidelity mannequins
 - low fidelity computer based model
Simulation in Radiology

- Procedural Simulations
 - US guided foreign body removal pioneered by WE Shiels, DO.
 - Turkey breast simulation model developed in 1989 with annual hands on RSNA workshops beginning in 1991

Simulation in Radiology

- Procedural Simulations
 - Fluoroscopy guided
 - Intussusception
 - Lumbar puncture
 - CT guided
 - Lumbar puncture

Fig. 1 Plastic tubing with the instructor’s external release valve (arrow) connects the aneroid gauge and bulb insufflator to the cylinder within the doll. Additional tubing extends from the doll to a pressure sensor and is transmitted via USB cable to a computer.

Simulation in Radiology

- Interpretive Simulations
 - Fluoroscopy
 - UGI and Enemas in Neonates
 - PACS on call
 - iPad model

Potential Barriers

- Cost of buying or making simulation device
- Time to train residents and fellows
- Lack of experience using this educational technique
So where do we go from here?
Translational Research Assessing Effect of Simulation Experience

- Develop simulation models/devices/scenarios for Radiology

- T1 – Evaluate educational outcomes looking for improved knowledge, skills, behaviors

- T2 – Assess for skill transfer from simulation laboratory to observed clinical practice

- T3 – Identify improvement in clinical outcomes due to simulation experience

Severe contrast reaction emergencies high-fidelity simulation training for radiology residents and technologists in a children’s hospital.

Figure 1. Radiology residents and radiology technologists’ (RT) knowledge improvement during simulated contrast emergencies.

*T P < .01.

Prospective randomized study of contrast reaction management curricula: computer-based interactive simulation versus high fidelity hands-on simulation.

Fig. 3. Mean scores from the three written tests using all available participants per test (N = 44). The error bars indicate the range of scores. No significant differences in scores between groups were detected for any of the three tests (p = 0.83, 0.65, and 0.98, from left to right).

Simulation-based educational curriculum for fluoroscopically guided lumbar puncture improves operator confidence and reduces patient dose.

TABLE 2. Average Fluoroscopy Time (Minutes) for Prospective versus Retrospective Study Cohorts

<table>
<thead>
<tr>
<th></th>
<th>Avg. Fluoro Time (Prospective), Minutes</th>
<th>Avg. Fluoro Time (Retrospective), Minutes</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diagnostic LP</td>
<td>0.81</td>
<td>0.94</td>
<td>.002*</td>
</tr>
<tr>
<td>LP for myelogram</td>
<td>0.98</td>
<td>1.4</td>
<td>.001*</td>
</tr>
<tr>
<td>All FGLP (total)</td>
<td>0.87</td>
<td>1.09</td>
<td>.002*</td>
</tr>
</tbody>
</table>

Avg., average; FGLP, fluoroscopically guided lumbar puncture; LP, lumbar puncture.

*Indicates a statistically significant difference between prospective and retrospective groups.
Future Directions

• Encourage collaboration to foster growth

• Start a subcommittee within our society to raise awareness

• Invite experts from other subspecialities to speak at SPR/IPR

References for Simulation in Radiology Education

